Activation and Reaction Volumes in Solution. 3

A. Drljaca, [†] C. D. Hubbard, [†] R. van Eldik, ^{*,†} T. Asano, ^{*,‡} M. V. Basilevsky, [§] and W. J. le Noble^{*,⊥}

Institute for Inorganic Chemistry, University of Erlangen—Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany, Institute for Fundamental Research of Organic Chemistry, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Japan, Karpov Institute of Physical Chemistry, 10, Vorontsovo Pole, 103064 Moscow, Russia, and Department of Chemistry, State University of New York, Stony Brook, New York 11794-3400

Received March 2, 1998 (Revised Manuscript Received May 28, 1998)

Contents

1.	Intr	oduction	2167
	A.	Scope of the Review	2167
	B.	Basic Concepts	2168
	C.	Experimental Techniques	2169
	D.	Volume Data from Other than High-Pressure Experiments	2169
2.	Vo	lume Data for Inorganic Reactions	2170
	A.	Solvent/Ligand Exchange Reactions	2170
	B.	Ligand Substitution Reactions	2198
	C.	Photoinduced Thermal Substitution Reactions	2204
	D.	Addition Reactions	2205
	E.	Formation and Dissociation Reactions	2207
	F.	Isomerization Reactions	2207
	G.	Electron-Transfer Reactions	2208
	H.	Electrodeposition/Electrochemical Reactions	2212
	I.	Heterolysis, Homolysis, and Homolytic Fission	2212
	J.	Photochemical and Photophysical Processes	2212
	K.	Reactions in Supercritical Fluids	2214
	L.	Bioinorganic and Biological Reactions	2215
	M.	Theoretical Calculations and Modeling	2221
3.	Vo	lume Data for Organic Reactions	2221
	A.	General Remarks	2221
	B.	Comments on Table 2	2252
	C.	Comments on Table 3	2258
	D.	Comments on Table 4	2258
	E.	Other Pressure Effects	2270
	F.	Viscosity Dependence of Reaction Rates	2272
	G.	Appendix: Rate Expressions of Stochastic Theories	2279
4.	Acl	knowledgments	2280
5.	Re	ferences	2280

1. Introduction

A. Scope of the Review

Three of the present authors reviewed the activation and reaction volumes of chemical reactions in solution for the 10-year period January 1977 to December 1986. Increased interest, activity, and

† University of Erlangen—Nürnberg.

developments in the field have prompted us to include additional authors in an effort to cover the next 10 years of literature, from January 1987 to December 1996, in a timely fashion. Of particular note are the developments in the theoretical treatment and interpretation of experimental volume data, and the application of high-pressure techniques to reactions of biochemical significance and to reactions in supercritical fluids, which have added new dimensions to the work over the past 10 years. In addition, some important data that became available during 1997 have also been included.

The presentation, except for the new topics, follows the outline of the earlier reviews in this series. 1,2 The current version is presented as a direct continuation of our earlier review,1 with as little duplication as possible, and readers are therefore urged to consult ref 1 in order to bridge the presentations. The organization of data is similar to that of the earlier reviews, 1,2 i.e., the data are organized in tabular form according to the type of reaction studied. In addition, a section on the viscosity dependence of reaction rates (3.F) is included. In the accompanying text the mechanistic implications of the data are discussed and in selected cases detailed analyses are presented. Several monographs have appeared since 1986 covering the following topics: inorganic high-pressure chemistry;³ organic high-pressure chemistry;⁴ highpressure chemical synthesis;⁵ high-pressure chemistry and biochemistry;6 high-pressure chemistry, biochemistry and materials science;7 chemistry under extreme or nonclassical conditions;8 high-pressure NMR;9 experimental techniques in high-pressure research;¹⁰ high-pressure techniques in chemistry and physics;11 and high-pressure liquids and solutions. 12 These monographs include review chapters dealing with specific aspects of the determination and interpretation of activation and reaction volume data for particular types of chemical processes. In addition, several reviews have appeared in journals since 1986. These reviews are more limited in scope than the present one (although perhaps also more critical); among these there are accounts dealing with inorganic and organometallic reactions, 13-22 high-pressure NMR spectroscopy,²³ organic reactions,^{24–28} biochemical systems,²⁹ and photochemical and photophysical aspects.^{30–34}


^{*}Kyushu University. Present and permanent address: Department of Applied Chemistry, Faculty of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan.

*Karpov Institute of Physical Chemistry.

- State University of New York, Stony Brook.

Alexander Drljaca was born in Düren, Germany, in 1970 and grew up in Australia. He was educated at Mazenod College (1982–1987) and later received his B.Sc.(Hons.) degree (1991) from Monash University. This was followed by a Ph.D. (1995) at the same institute working with Leone Spiccia. Recently he has completed one year as an Alexander von Humboldt Fellow (1997) with Rudi van Eldik at the University of Erlangen—Nürnberg working on solvent exchange reactions of metal complexes at high pressures using NMR techniques. His research interests include, besides high-pressure inorganic chemistry, the synthesis and characterization of new mesoporous materials and sol—gel/microwave chemistry.

Colin D. Hubbard was born in Ipswich, England, and grew up in Norfolk and Sussex. He read Chemistry at the University of Sheffield, and received a B.Sc. (Hons) degree in 1961 and a Ph.D. degree in 1964, also from Sheffield working with Ralph G. Wilkins. Postdoctoral education followed at Massachusetts Institute of Technology and Cornell University (Gordon G. Hammes) and at the University of California in Berkeley (Jack F. Kirsch). He was appointed as Assistant Professor (1967), Associate Professor (1972), and Professor (1979) in the Department of Chemistry at the University of New Hampshire, Durham, NH. In 1994 he accepted a position as a senior research scientist in the Institute for Inorganic Chemistry at the University of Erlangen—Nürnberg, Germany. His interest in high-pressure chemistry originated from research projects with Edward Caldin (University of Kent, Canterbury, England), and with John Burgess (University of Leicester, England). His other research interests include electron-transfer reactions, proton tunneling, and enzyme catalysis.

B. Basic Concepts

A detailed account of the basic principles and fundamental concepts relevant to the determination and interpretation of activation and reaction volumes has been given in the previous review. These remain pertinent as there have been no new fundamental developments. Reaction and activation volumes for reactions in solution are still interpreted in terms of intrinsic (due to changes in bond lengths and bond angles) and solvational (due to changes in electrostriction) contributions. By way of comparison

Rudi van Eldik was born in Amsterdam, Holland, in 1945 and grew up in Johannesburg, South Africa. He received his Ph.D. degree (1971) from the Potchefstroom University. He spent two years (1972 and 1978) with Gordon M. Harris at SUNY at Buffalo, NY, and one year as an Alexander von Humboldt Fellow with Hartwig Kelm at the University of Frankfurt, Germany. He was group leader at the Institute for Physical Chemistry, University of Frankfurt (1980—1987), and Professor of Inorganic Chemistry at the University of Witten/Herdecke (1987—1994). He is presently Professor of Inorganic and Analytical Chemistry at the University of Erlangen—Nürnberg. In 1997 he received an honorary doctorate from the Potchefstroom University. His research interests are in mechanistic studies of inorganic, organometallic, and bioinorganic reactions, with special emphasis on the application of fast kinetic and high-pressure techniques.

Tsutomu Asano was born in Osaka, Japan, in 1941. He obtained an undergraduate degree in chemistry at Kyoto University, followed by an M.A. and Ph.D. at the same institute, graduating in 1969. After postdoctoral work with Professor William J. le Noble, he returned to Kyoto and worked for the late Professor Jiro Osugi. He joined the faculty of Oita University in 1975, where he is now a Professor of Chemistry. He serves as an Associate Editor of *Bulletin of the Chemical Society of Japan* and also as a member of the editorial board of *The Review of High Pressure Science and Technology* published by Japan Society of High Pressure Science and Technology. His prime interest has been in studies of organic reaction mechanism by kinetic measurements including the ones under high pressure. He recently developed interest in dynamic solvent effects and his efforts are concentrated on kinetics in highly viscous conditions.

with earlier work in this area, fewer investigators have tried to measure the pressure dependence of ΔV^{\dagger} to report data on the compressibility of activation. The accuracy of kinetic and thermodynamic measurements has improved significantly such that in principle it should be easier to study the pressure dependence of ΔV^{\dagger} . In many cases no significant pressure dependence was discerned by the original authors in the lower pressure range (up to 150 MPa). However, linear dependence of the logarithm of the

Mikhael Basilevsky was born in Moscow, Russia, in 1935. He graduated from Moscow State University in 1957 and received his Ph.D. (1964) and Doctor (1973) degrees at Karpov Institute of Physical Chemistry, Moscow. Since 1982 he has been appointed as Professor of Chemical Physics and a head of laboratory of quantum chemistry and statistical physics at Karpov Institute. He has been a member of International Academy of Quantum Molecular Science since 1991. His research interests include the theory of chemical reactions and are recently focused on reaction kinetics and mechanisms in condensed phase.

Bill le Noble is a native of Rotterdam, The Netherlands. He did undergraduate work in chemical engineering in Dordrecht and then moved to the United States in 1949. After a stint in the U.S. Army, which included wartime service in Korea, he attended the University of Chicago and received a Ph.D. degree in organic chemistry with Professor G. Wheland. Postdoctoral work at Purdue University was followed in 1959 by an appointment at the State University of New York at Stony Brook, where he has stayed ever since. He has held visiting Professorship at the Free University of Amsterdam and the University of Groningen, received Humboldt Senior Scientist and Mombusho Special Professorship Awards, and has served as senior editor of *The Journal of the Organic Chemistry* and *Recueil* as well as in the Chair's position of his Department.

rate constant upon pressure is not general or expected over wider ranges. Related to this point are the empirical equations used to fit the data, a topic we have discussed in our earlier reviews. A recent paper has examined this issue critically.

Improvements in instrumentation and development of new techniques (see section 1.C) in the study of chemical reactions at elevated pressure have opened new areas of research and volume data have been generated for systems that could not be studied before. In this respect the more widespread application of volume profile analysis has contributed toward a better understanding of reaction mechanisms for chemical reactions in solution. The location of the transition state along the reaction coordinate can

then be discussed in terms of partial molar volume changes associated with the chemical process, and in cases where the partial molar volumes of reactants and products are experimentally accessible the actual partial molar volume of the transition state can be determined. The partial molar volume of the transition state can also be estimated on a computational basis, and this has been accomplished for a few organic reactions (see section 3) and has been suggested to be potentially possible for certain inorganic reactions (see section 2.M). An advantage is that the interpretation of volume changes in terms of intrinsic and solvational components as they relate to the mechanism is more direct, straightforward, and therefore more reliable than is the interpretation of thermal activation parameters, allowing molecular and solvent reorganization to be visualized, modeled, and predicted for other reactions. In this way such analyses contribute to our fundamental understanding of the detailed reaction mechanisms. In addition, such studies have more recently also been extended to reactions in supercritical fluids. More information on these advances is given in the subsequent sections.

Most of the activation volume data for inorganic, organometallic, and organic reactions reported in this review can be analyzed in terms of the transition-state theory. The interpretation of volume data for fast chemical processes where the transition-state theory is no longer valid has attracted the attention of a number of investigators, and will therefore be dealt with separately in section 3.

C. Experimental Techniques

Further development of NMR techniques to study chemical reactions under extreme conditions of temperature and pressure has been reported.^{36,37} The development of a high-pressure NMR probe for a standard narrow-bore 400-MHz magnet is a remarkable achievement,³⁸ since in the past a considerably more expensive wide-bore magnet was usually employed. Instrumentation has also been developed to perform routinely pulse-radiolysis experiments at pressures up to 200 MPa (i.e., 2 kbar)³⁹ using a transportable high-pressure system.⁴⁰ Further modifications of high-pressure stopped-flow instruments constructed earlier were undertaken to enable measurements using fluorescence detection to be made, and to permit the use of low temperatures for reactions in organic solvents. 41,42 A special optical cell was constructed to carry out flash photolysis experiments on organometallic compounds at elevated pressure in supercritical fluids. 43 Noteworthy progress has also been achieved in employing electrochemical techniques at elevated pressures, and therefore more diverse applications can be pursued and a wider range of measurements obtained. 44-47

D. Volume Data from Other than High-Pressure Experiments

Time-resolved laser-induced photoacoustic methods can be employed to obtain information on molecular volume changes. In particular these techniques have been applied to biological systems and the subject has been reviewed in recent years. ^{48,49} Volume changes

that occur in a photoinduced chemical reaction consist of the volume difference between the reactants and products, and the contraction or expansion of the medium through cooling or heating. These contributions can be separated by means of photothermal measurements as a function of one of the thermoelastic parameters of the medium.⁴⁸ The direct volume change originating from the molecular process other than heating or cooling can be calculated from measurements of the acoustic signal as a function of temperature. The conformational volume change associated with the photodissociation of CO from sperm whale myoglobin has been determined using this method.⁵⁰ Detailed accounts of the volume effects measured on reactions of proteins have been reported using this technique. 48,49 More recent work not covered by these reviews include volume changes that for instance occur during the bacteriorhodopsin photocycle, 51,52 photoisomerization of carbocyanines,53 intramolecular electron transfer during MLCT (metalto-ligand charge transfer) excitation of ruthenium cyano complexes,⁵⁴ electron-transfer quenching of excited $Ru(bpy)_3^{2+,55}$ exciplex formation in a semiflexible donor-bridge-acceptor compound,56 phototransformation of phytochrome A,57 and triplet formation of water-soluble porphyrins.⁵⁸

2. Volume Data for Inorganic Reactions

The data in Table 1 (1552 entries from 328 references) are arranged according to the different types of reactions and the atomic number of the central metal atom. Reaction volume data (ΔV) are included in the table where available, and the methods employed to determine ΔV are (a) from the pressure dependence of the equilibrium constant, (b) from dilatometric or partial molar volume (density) measurements, and (c) from theoretical extrapolations. There are other general remarks with regard to the table: ΔV^{\dagger} data are quoted at ambient pressure; the maximum applied pressure is quoted in the fourth column; the number of data refers to the number of pressures at which measurements (usually three to five kinetic runs) were performed; concentration is given in mol L^{-1} (M) or mol kg^{-1} (m); salts quoted under remarks were used to adjust the ionic strength (μ). A list of abbreviations follows the tabulated data. Reactions for which no reaction products are specified in detail are indicated in this way since the original papers did not specify a definite product or set of products.

A. Solvent/Ligand Exchange Reactions

In this section exchange of a ligand molecule coordinated to a metal ion with an identical but uncoordinated molecule of the bulk solvent is considered. Thus there is no net reaction and the reaction volume is zero. The classification system for solvent exchange is the familiar one:³⁸³ D for dissociative activation, in which an intermediate of lower coordination number is proposed since the departing solvent molecule is completely dissociated before the entering one is adjacent or present (the intermediate is rarely detected); A (associative) for

a reaction in which the entering solvent molecule increases the coordination number since it is present in the coordination sphere before the leaving molecule departs; and I for an interchange process. The latter category, in which no intermediate of higher or lower coordination number occurs, may be further subclassified as I_a or I_d which indicate interchange with associative and dissociative characters, respectively. These can be paired with S_N2 limiting (A), S_N2 (I_a), S_N1 (I_d), and S_N1 limiting (D), the nomenclature commonly in use for organic reactions. The interchange may be regarded as "pure" if in a volume sense the extent to which the entering solvent molecule is entering is exactly matched by the extent to which the leaving molecule is departing.

In considering solvent exchange processes, it has been customary¹⁴ to assume that any change in electrostriction during the activation process is negligible, and there is no change in volume due to possible coordinate bond length changes or rearrangements of the coordinated solvent molecules or other not exchanging ligands. It has been recognized that indeed there may be bond length changes;14 however, it is difficult to project how this property could be readily accessible experimentally. Recent calculations on water exchange on first row transition metal ions in oxidation state two led to the conclusion384-387 that the coordinated but nonexchanging water molecules are drawn closer to the metal ion during activation and therefore there is a volume change contribution to the measured volume of activation from this source. Yet other calculations reveal the shortcomings of this approach.^{388,389} Therefore, in highlighting many solvent exchange processes, it will be assumed that ΔV^{\dagger} is a parameter that registers pure interchange when its value is zero. Negative values denote associative activation proceeding from I_a to A with increasing compactness and increasing negative magnitude. Transition states arising from mechanisms, ranging from I_d to D, are indicated by increasing positive values of ΔV^{\dagger} . There is general agreement among experimentalists over this classification.

Of the almost 100 entries of this type of system, the large majority are ionic systems and the central metal ion is a transition metal. Water is the most common solvent reported and therefore the most common exchanging molecule, but a variety of other unidentate molecules also function as solvents. In a few cases the exchange of bidentate solvent molecules has been monitored. There is a rich variety of systems that have nonexchanging ligands some of which are of multidentate character, beside those sytems which comprise a central metal ion coordinated only by ligands of which the solvent is composed. Some of the stimulus to study the former reaction type arises from the investigation of the gadolinium ion in concert with selected ligands as suitable complexes to serve as magnetic resonance imaging agents. Indeed NMR spectroscopy remains the instrumental method used in almost all studies. However, due to the technical difficulties and nonavailability of commercial NMR high-pressure accessories, the studies reported emerge from quite a

Table 1. Activation and Reaction Volumes of Inorganic Reactions a

no.	reaction	solvent	T, °C	P, MPa	no. of data	${\overset{\Delta}{ m cm^3mol^{-1}}}$	ΔV , cm ³ mol ⁻¹ (method)	ref(s)	remarks
1	$Be(H_2O)_4^{2+} + H_2O$	H ₂ O	lvent/Li ₂ 57	gand E 200	Exchange 9	Reactions -13.6 ± 0.5		59	diluent CD ₃ NO ₂
2	$Be(DMSO)_4^{2+} + DMSO$	DMSO	27	200	8	-2.5 ± 0.2		59	diluent CD ₃ NO ₂
3	$Be(TMP)_4^{2+} + TMP$ $Be(DMF)_4^{2+} + DMF$	TMP	91	200	8	-4.1 ± 0.2		59 50	diluent CD ₃ NO ₂
	$Be(DMF)_4^{2+} + DMF$ $Be(TMU)_4^{2+} + TMU$	DMF TMU	53 73	200 200	8 8	$-3.1 \pm 0.4 \\ +10.5 \pm 0.7$		59 59	diluent CD ₃ NO ₂ diluent CD ₃ NO ₂
	$Be(DMPU)_4^{2+} + DMPU$	DMPU	85	200	8	-10.3 ± 0.8		59	diluent CD ₃ NO ₂
	$Sc(TMP)^{3+} + TMP$	TMP	25	200		-20.1 ± 1.0		60	
	$Ti(H_2O)_6^{3+} + H_2O$ $TiO(e-DMSO)_4(a-DMSO)^{2+} + DMSO$	H ₂ O	0-25	230 200	10 9	$-12.1 \pm 0.4 \\ +1.6 \pm 0.1$		61 62	2.0 m triflic acid
9	(exchange of axially bonded a-DMSO)	CD_3NO_2	-10	200	9	$\pm 1.0 \pm 0.1$		02	
10	$TiO(e-DMSO)_4(a-DMSO)^{2+} + DMSO$	CD_3NO_2	21	200	9	$+4.8 \pm 0.1$		62	
	(exchange of equatorially bonded e-DMSO)	D. (E)							
	$Ti(DMF)_6^{3+} + DMF$ $Ti(DMF)_6^{3+} + DMF$	DMF DMF	$-3 \\ -31$	200 200	9 9	$-5.7 \pm 0.6 \ -6.8 \pm 0.4$		63 63	
	cis-TiCl ₄ (Me ₂ S) ₂ + Me ₂ S		-55	220		$+24.4 \pm 1.0$		64	
	cis-TiCl ₄ (Me ₂ Se) ₂ + Me ₂ Se		-45	220		$+26.1\pm1.2$		64	
	cis-TiCl ₄ ·2TMPA + TMPA	CHCl ₃	12	220		$+17.5 \pm 1.0$		64	
	$V(DMSO)_6^{3+} + DMSO$ $Cr(CH_3NH_2)_5H_2O^{3+} + H_2O$	CD ₃ NO ₂ H ₂ O	25 60	200 200	7 9	$-10.1 \pm 0.6 \\ -3.8 \pm 0.3$		65 66	$\mu = 0.7 \text{ M}$
	$Mn(DMF)_6^{2+} + DMF$	DMF	36	300	7	$-3.8 \pm 0.3 + 1.6 \pm 0.5$		67	$\mu = 0.7 \text{ NI}$
	$Mn(DMF)_6^{2+} + DMF$	DMF	25	200	9	$+2.4\pm0.2$		68	
	$Mn(DMF)_6^{2+} + DMF$	DMF	45	200	10	+4.2		69	
	$Mn(DMTF)_6^{2+} + DMTF$	DMTF AcOH	29	200	10 >12	+11.5		69 70	0.02 M HClO ₄ (diluent d ₂ -DCM)
	Mn(HOAc) ₆ ²⁺ + AcOH Mn(OAc) ₂ (HOAc) ₄ + AcOH	AcOH	25 25		>12	$+0.4 \pm 0.7 \\ +6.7 \pm 0.6$		70	0.02 M HClO ₄ (diluent d_2 -DCM)
	$Mn(en)_3^{2+} + en$	en	5	200	10	$+0.9 \pm 0.9$		71	o.o m mero4 (andene de Benn)
	$Fe(en)_3^{2+} + en$	en	52	200	15	-1.2 ± 0.8		71	
	$Fe(H_2O)(phdta)^- + H_2O$	H ₂ O	25	150	8	$+4.6 \pm 0.2$		72	$\mu = 1.0 \text{ M}$
	Fe(DMF)(phdta) ⁻ + DMF Fe(DMF) ₆ ²⁺ + DMF	DMF DMF	25 25	150 200	8 9	$+10 \pm 2 \\ +8.5 \pm 0.4$		72,73 68	
	$C_0(CH_3NH_2)_5(H_2O)^{3+} + H_2O$	H ₂ O	16	200	7	$+5.7 \pm 0.2$		66	$\mu = 1.3 \text{ M}$
	$Co(en)_3^{2+} + en$	en	60	200	14	$+0.9\pm0.9$		71	
	$Co(tn)_3^{2+} + tn$	tn	29	200	13	$+6.6\pm0.3$		74	
	$C_0(CN)_5(H_2O)^{2-} + H_2O$	H ₂ O DMTF	$ \begin{array}{r} 18 \\ -22 \end{array} $	400 200	4	$+7.1 \pm 0.4$		75 69	$pH = 3, \mu = 0.35 \text{ M (CF}_3SO_3H)$
34	$Ni(DMTF)_6^{2+} + DMTF$	DMIT	9	200	10 10	$+20.6 \\ +21.8$		09	
	$Ni(Ma)(DMF)^{2+} + DMF$	DMF	50		>10	$+10.6 \pm 0.8$		76	
	$Ni(Ma)(MeCN)^{2+} + MeCN$	MeCN	50		>10	-3.5 ± 0.9		76	
37	$Ni(MeCN)_6^{2+} + MeCN$	MeCN	59 57	> 200		$+12.0 \pm 0.4$		77	
	$Ni(EtCN)_6^{2+} + EtCN$ $Ni(PrCN)_6^{2+} + PrCN$	EtCN PrCN	57 56	>200 >200		$+13.7 \pm 0.5 +13.1 \pm 0.5$		77 77	
	$Ni(Pr^{i}CN)_{6}^{2+} + Pr^{i}CN$	Pr ⁱ CN	55	>200		$+12.4 \pm 0.6$		77	
	$Ni(BuCN)_6^{2+} + BuCN$	BuCN	56	>200		$+14.4\pm0.4$		77	
	$Ni(PhCN)_6^{2+} + PhCN$	PhCN	59	>200		$+13.1 \pm 0.6$		77	
	$Ni(en)_3^{2+} + en$ $Cu(DMF)_6^{2+} + DMF$	en DMF	25 27	270 200	8 9	$+11.4 \pm 2.0 \\ +8.4 \pm 0.4$		78 79	
	$Cu(tren)H_2O^{2+} + H_2O$	H ₂ O	25	200	9	-4.7 ± 0.2		80	$\mu = 1.0 \text{ M (NaClO}_4)$
	$Ga(H_2O)_6^{3+} + H_2O$	H_2O	25	220		$+5.0\pm0.5$		81	$[HClO_4] = 3$, 0.4 and 0.25 M
	$Ga(H_2O)_5(OH)^{2+} + H_2O$	H ₂ O	25	220		$+7.7 \pm 1.4$		81	$[HClO_4] = 3, 0.4 \text{ and } 0.25 \text{ M}$
	trans-ZrCl ₄ •2TMPA + TMPA Mo(O) ₂ (acac) ₂ + Hacac	CHCl₃ Hacac	6 5	200 90	10 3	-11.1 ± 0.8		82,83 84	
	$Ru(NH_3)_5H_2O^{3+} + H_2O$	H ₂ O	25	400	5	-4.04 ± 0.14		85	0.01 m triflic acid
	$Ru(H_2O)_6^{2+} + H_2O$	H_2O	-5 to 0		5-6	-0.4 ± 0.7		86	1.5 m triflic acid
	$Ru(H_2O)_6^{3+} + H_2O$	H ₂ O	5	190	4	-8.3 ± 2.1		86	[Htos] = 0.1, 0.5 and 3.0 M
	$Ru(H_2O)_5(OH)^{2+} + H_2O$ $Ru(CH_3CN)_6^{2+} + CH_3CN$	H ₂ O CH ₃ CN	15 100	190 >200	4 5	$-2.1 \pm 1.4 \\ +0.4 \pm 0.6$		86 86	
	$Ru(\eta - C_6H_6)(H_2O)_3^{2+} + H_2O$	H ₂ O	83	200	9	$+1.5 \pm 0.4$		87	
56	$Ru(\eta - C_6H_6)(CH_3CN)_3^{2+} + CD_3CN$	CD_3CN	25	200	5	$+2.4\pm0.8$		88	
	$Ru(\eta-C_5H_5)(CH_3CN)_3^+ + CD_3CN$	CD ₃ CN	25	200	11	$+11.1 \pm 0.5$		88	0.714
	$Rh(CH_3NH_2)_5H_2O^{3+} + H_2O$ $Rh(H_2O)_6^{3+} + H_2O$	H ₂ O H ₂ O	45 50	200 210	8 4	$^{+1.2}\pm 1.1 \ -4.2\pm 0.6$		66 89	$\mu = 0.7 \text{ M}$ $\mu = 5.6 \text{ M (NaClO}_4)$, see text
	$Rh(H_2O)_5OH^{2+} + H_2O$	H ₂ O	50	210	4	-4.2 ± 0.0 +1.5		89	$\mu = 5.6 \text{ M} \text{ (NaClO4), see text}$ $\mu = 5.6 \text{ M} \text{ (NaClO4), see text}$
	$Cp*Rh(H_2O)_3^{2+} + H_2O$	H ₂ O	-2	200	9	$+0.6\pm0.6$		90	,
	$Rh_2(CH_3CN)_{10}^{4+} + CH_3CN$	CH ₃ CN	41	200	6	-4.9 ± 0.2		91	
	$Pd(H_5dien)H_2O^{2+} + H_2O$ $Pd(Me_5dien)H_2O^{2+} + H_2O$	H ₂ O	23	200	7 7	$-2.8 \pm 0.4 \ -7.2 \pm 0.6$		92 93	
	$Pd(Me_5dien)H_2O^{2+} + H_2O$	H ₂ O H ₂ O	25 25	200 200	7	-7.2 ± 0.0 -7.7 ± 1.3		93	
	$Pd(1,4-dithiane)_2^{2+} + 1,4-dithiane$	CD_3NO_2	9	200	9	-9.8 ± 0.4		94	
67	$Pd(Et_2S)_4^{2+} + Et_2S$	Et_2S	85		>10	-11.6 ± 0.4		95	
	$Pd(H_2O)_4^{2+} + H_2O$ $Pd(dm_2)_4^{2+} + dm_2$	H ₂ O	51		>10	-2.2 ± 0.2		95 05	
	$Pd(dma)_4^{2+} + dma$ $Pd(MeCN)_4^{2+} + MeCN$	dma MeCN	30 63		> 10 > 10	$-2.8 \pm 0.2 \\ -0.1 \pm 0.4$		95 95	
	$Pd(DMF)_4^{2+} + DMF$	DMF	32		>10	-0.2 ± 0.6		95	
72	$Pd(Me_2S)_4{}^{2+} + Me_2S$	Me_2S	30	200	>10	-9.4 ± 0.3		95	
	$Pd(MeNC)_4^{2+} + MeNC$	MeNC	-9		>10	-3.1 ± 0.1		95	
	bisoxa(Gd(DO3A) H_2O) + H_2O Gd(DTPA)(H_2O) ²⁻ + H_2O	H ₂ O H ₂ O	-1 13, 64	200 200	9 9	$+2.3 \pm 0.2 \\ +12.5 \pm 0.2$		96 97	
	$Gd(DTPA)(H_2O)^- + H_2O$ $Gd(DOTA)(H_2O)^- + H_2O$	H_2O	13, 64	200	9	$+12.5 \pm 0.2 +10.5 \pm 0.2$		97 97	
	$(N(CS)N-bz-Gd(DO3A)(H_2O))_{23} + H_2O$	H ₂ O	5	200	8	$+3.1 \pm 0.2$		98	
	$Gd(DO3A-bz-NO_2)(H_2O) + H_2O$	H ₂ O	15	200	10	$+7.7 \pm 0.5$		98	
79	$BO-(Gd(DO3A)(H_2O))_2 + H_2O$	H_2O	4	200	10	$+0.5\pm0.2$		99	

Table 1. (Continued)

no.	reaction	solvent	<i>T</i> , °C	<i>P</i> , MPa	no. of data	${\Delta V^{\!\!+}, \atop { m cm}^3 { m mol}^{-1}}$	$\Delta ar{V}$, cm ³ mol ⁻¹ (method)	ref(s)	remarks
80	$Tb(H_2O)_9^{3+} + H_2O$	olvent/Li H ₂ O	gand E -5	Exchan 250	ge React 9-12	ions (Contin -5.7 ± 0.5	nued)	100.101	$[HClO_4] = 2.0 M$
81	$Tb(PDTA)(H_2O)_2^- + H_2O$	H_2O	18	200	9	-7.6 ± 0.3		102	$pH = 4.0 (HClO_4)$
	$Dy(H_2O)_9^{3+} + H_2O$ $Dy(PDTA)(H_2O)_9^{-} + H_9O$	H_2O H_2O	$-5 \\ 18$	250 200	9-12	$-6.0 \pm 0.4 \\ -5.5 \pm 0.3$		100,101 102	$[HClO_4] = 2.0 M$ pH = 4.1 (HClO ₄)
	$H_0(H_2O)_9^{3+} + H_2O$	H ₂ O	-5	250	9-12	-6.6 ± 0.4			$[HClO_4] = 2.0 \text{ M}$
	$Er(H_2O)_9^{3+} + H_2O$	H ₂ O	-5	250	9-12	-6.9 ± 0.4			$[HClO_4] = 2.0 \text{ M}$
	$Er(PDTA)(H_2O)_2^- + H_2O$ $Tm(H_2O)_9^{3+} + H_2O$	H ₂ O H ₂ O	$-1 \\ -5$	200 250	$9 \\ 9-12$	$-6.5 \pm 0.3 \\ -6.0 \pm 0.8$		102 100.101	$pH = 4.1 (HClO_4)$ $[HClO_4] = 2.0 M$
88	$Tm(PDTA)(H_2O)_2^- + H_2O$	H_2O	-1	200	9	-1.2 ± 0.5		102	$pH = 4.1 \text{ (HClO}_4)$
	Yb(PDTA)(H_2O) ₂ ⁻ + H_2O Os(η -C ₆ H_6)(H_2O) ₃ ²⁺ + H_2O	H_2O H_2O	19 87	200 200	9 9	$+7.4 \pm 0.8 \\ +2.9 \pm 0.6$		102 87	$pH = 4.0 (HClO_4)$
	$trans$ -Os(en) ₂ (η^2 -H ₂)(H ₂ O) ²⁺ + H ₂ O	H ₂ O	11	200	10	-1.5 ± 0.5		103	
	trans-Os(en) ₂ (η^2 -H ₂)(CH ₃ CN) ²⁺ + CH ₃ CN	CH ₃ CN	25	200	4	-0.5 ± 0.2		103	
	$\text{Cp*Ir}(\text{H}_2\text{O})_3^{2+} + \text{H}_2\text{O}$ $\text{Ir}(\text{H}_2\text{O})_6^{3+} + \text{H}_2\text{O}$	H ₂ O H ₂ O	8 85	200 200	9 4	$+2.4 \pm 0.5 \\ -5.7 \pm 0.5$		90 104	$\mu = 5.1 \text{ M (NaCF}_3\text{SO}_3)$
95	$Ir(H_2O)_5(OH)^{2+} + H_2O$	H_2O	85	200	4	-0.2 ± 0.8		104	$\mu = 5.1 \text{ M (NaCF}_3\text{SO}_3)$
	$Pt(H_2O)_4^{2+} + H_2O$ $Pt(MeNC)_4^{2+} + MeNC$	H_2O MeNC	$\frac{24}{-9}$		>10 >10	$-4.6 \pm 0.2 \\ -3.7 \pm 0.1$		95 95	
	Pt(1,4-dithiane) ₂ ²⁺ + 1,4-dithiane	CD ₃ NO ₂		200	9	-3.7 ± 0.1 -12.6 ± 1.2		94	
	$Pt(Me_2S)_4^{2+} + Me_2S$	CD ₃ NO ₂		200	9	-22.0 ± 1.3		94	
100	$Pt(DMSO)_2(DMSO)_2^{2+} + DMSO$	CD_3NO_2	-9 87	180 180	5 5	$-2.5 \pm 0.3 \\ -5 \pm 3$		105 105	
102	$\textit{cis}\text{-PtPh}_2(Me_2S)_2 + Me_2S$	C_6H_6	69, 75	200	8	$+4.7\pm0.5$		106	
	cis-PtPh ₂ (DMSO) ₂ + DMSO cis-PtMe ₂ (DMSO) ₂ + DMSO	$CDCl_3$ C_6H_6	58 60	200 200	9 11	$+5.5 \pm 0.8 \\ +4.9 \pm 0.5$		106 106	pH = 5.1 pH = 5.0
	$UO_2(HMPA)_4^{2+} + HMPA$	HMPA	7	200	9	-11.3 ± 1.4		107	prr – 5.0
106	$UO_2(TMPA)_5^{2+} + TMPA$	TMPA	7	200	9	$+2.1 \pm 1.5$		107	$\mu = 3.0 \text{ M (NaClO}_4)$
	$Be(H_2O)_4^{2+} + hipt \rightleftharpoons Be(ipt)(OH_2)_2^{+} + H^{+}$	H_2O	25	Substi 200	tution Re	eactions −7.1 ± 0.2	$+5.3 \pm 0.2$ (a)	108	$\mu = 0.1 \text{ M (NaClO}_4/\text{HClO}_4)$
	$B(OH)_3 + hipt \rightleftharpoons B(OH)_2(ipt) + H_2O$	H ₂ O	25	200	6	-9.9 ± 0.3	-2.8 (c)	109	$\mu = 0.1 \text{ M (NaClO4)}$
	$B(OH)_3 + H_2cht^{2-} \rightleftharpoons B(OH)_2(cht)^{3-} + H_3O^+$ $B(OH)_3 + H_2res^{2-} \rightleftharpoons B(OH)(res)^{2-} + H_2O$	H_2O H_2O	25 25	200 200	6 6	$-15.3 \pm 1.9 +3.9 \pm 0.4$	-9.0 (c)	109 109	$\mu = 0.1 \text{ M (NaClO}_4)$ $\mu = 0.1 \text{ M (NaClO}_4)$
	$Mg^{2+} + 8$ -hydroxy $Qui \rightarrow Mg(8$ -oxy $Qui)^+ + H^+$	H_2O	5	100	9			42	$\mu = 0.2 \text{ M (KCl)}, \text{ pH} = 8.0$
111 112						$-3.1 \pm 0.4 \\ -3.6 \pm 0.5$	-6.7 ± 2.6 (b) -7.6 ± 3.2 (b)		absorbance fluorescence
113						-3.4 ± 0.3	-7.2 ± 2.2 (b)		global
114	$Mg(8-oxyQui)^+ + H^+ \rightarrow Mg^{2+} + 8-hydroxyQui$	H_2O	5	100	9	126122		42	$\mu = 0.2$ M (KCl), pH = 8.0 absorbance
114 115						$+3.6 \pm 2.2 \\ +4.0 \pm 2.7$			fluorescence
116						$+3.8\pm1.9$			global
117	hydrolysis of P_{6m}	H_2O	40	500	6	-5.67		110	pH = 1 (HCl)
118	P_6					-3.81			
119	P_{8m}					-5.35			
120 121	P_8 V(H ₂ O) ₆ ³⁺ + SCN ⁻ \rightarrow V(H ₂ O) ₅ NCS ²⁺ + H ₂ O	H_2O	25	200	9	$-3.87 \\ -9.4 \pm 0.6$	$+8.5 \pm 1.2$ (a,c)	111	$\mu = 0.6 \text{ M}, 0.014 < \text{pH} < 1.7$
	$V(H_2O)_5NCS^{2+} + H_2O \rightarrow V(H_2O)_6^{3+} + SCN^{-}$	H_2O	25	200	9	-17.9 ± 0.7		111	$\mu = 0.6 \text{ M}, 0.014 < \text{pH} < 1.7$
	$VO(H_2O)_5^{2+} + D_2O \rightarrow VO(H_2O)_4D_2O^{2+} + H_2O$ $V(DMSO)_6^{3+} + NCS^- \rightarrow V(DMSO)_5NCS^{2+} +$	D_2O DMSO	65 40	200 180	6 7	$+1.9 \pm 0.2$ -1.1 ± 1.1	$+10.5 \pm 2.7$ (a)	112 65	
	DMSO V(DMSO) ₅ NCS ²⁺ + DMSO \rightarrow V(DMSO) ₆ ³⁺ +	DMSO	40	180	7	-11.6 ± 1.6	10.0 ± 2.7 (u)	65	
	NCS ⁻ $Cr(NH_3)_5(DMF)^{3+} + H_2O \rightarrow Cr(NH_3)_5(H_2O)^{3+} +$	H_2O		150				113	
126	DMF		40			-2.8			
127 128			45 50			-3.1 -3.7			
	$Cr(Hedta)OH_2 + NCS^- \rightarrow products$	H_2O	25	200	7		$+3 \pm 2$ (a)	114	$\mu = 1.0 \text{ M (HClO}_4/\text{NaClO}_4)$
	$Cr(edta)^- + NCS^- \rightarrow products$	H ₂ O	25	200	7	-13.6 ± 0.6	100 1 5 ()	114	$\mu = 1.0 \text{ M (HClO}_4/\text{NaClO}_4)$
	$Cr(bpy)_3^{3+} + OH^- \rightarrow products$ $Cr(phen)_3^{3+} + OH^- \rightarrow products$	H_2O H_2O	50 50	300 300	7 7		$+32 \pm 5$ (a) $+21 \pm 4$ (a)	115 115	$\mu = 1.0 \text{ M (NaCl)}$ $\mu = 1.0 \text{ M (NaCl)}$
	$Cr(CO)_5(FB)pip \rightarrow Cr(CO)_5pip + FB$	FB	25	150				116	[FB]; [hep] (M)
133 134					4 3	$+9.7 \pm 0.5 +9.5 \pm 0.9$			0.89; 6.0 1.3; 5.6
135					4	$+7.5 \pm 0.1$			2.0; 5.3
136					4	$+9.6 \pm 1.0$			2.6; 5.0
137 138					4	$+7.9 \pm 0.5 \\ +5.4 \pm 0.5$			4.4; 3.8 5.5; 3.0
139	0 (4) 0124 + 033		10	4.0	4	$+6.1\pm0.3$		117	10.1; 0
140	trans-Cr(tacpa)Cl ²⁺ + OH ⁻ \rightarrow products CrCl(N ₅) ²⁺ + OH ⁻ \rightarrow Cr(N ₅)(OH) ²⁺ + Cl ⁻	H_2O H_2O	10 25	140 100		$+31.1 \pm 0.1$		117 118	
141	$N_5 = sfac$ -(en)(dien)	£	-		5	$+23.3 \pm 1.9$		-	$\mu = 0.05 \text{ M}$
142	$N_5 = mer$ -(en)(Medpt) $N_5 = mer$ -(en)(dpt)				6 5	$+30.3 \pm 1.6$			$\mu = 0.1 \text{ M}$
143 144	$N_5 = mer$ -(en)(dpt) $N_5 = mer$ -(ibn)(dpt)					$+25.3 \pm 1.0$ $+24.0 \pm 1.9$			$\mu = 0.5 \text{ M}$ $\mu = 0.1 \text{ M}$
145	$N_5 = mer$ -(tn)(dpt)	41-6	95	100	5	$+25.5 \pm 1.0$		110	$\mu = 0.5 \text{ M}$
	$Cr(CO)_5thf + pip \rightarrow Cr(CO)_5pip + thf$ $Cr(CO)_5thf + PPh_3 \rightarrow Cr(CO)_5PPh_3 + thf$	thf thf	25 25	100 100	9 8	$-2.2 \pm 0.6 \\ -1.9 \pm 1.0$		119 119	
148	$Cr(CO)_5 thf + P(OEt)_3 \rightarrow Cr(CO)_5 P(OEt)_3 + thf$	thf	25	100	5	-3.6 ± 0.7	140.43	119	0.04.1
149 150	$Cr(NH_3)_5X^{3+} + H_2O \rightarrow Cr(NH_3)_5(H_2O)^{3+} + X$ X = DMSO	H_2O	45	100	3	-3.2 ± 0.1	+10 (b)	120a	$\mu = 0.01 \text{ M (HClO}_4)$
100	A - DIVIDO		40	100	3	J.≈ ⊥ U.1			

Table 1. (Continued)

no.	reaction	solvent	$^{T,}_{^{\circ}\mathrm{C}}$	P, MPa	no. of data	${\Delta V^{\sharp}, \atop { m cm}^3 { m mol}^{-1}}$	\Deltaar{V} , cm 3 mol $^{-1}$ (method)	ref(s)	remarks
		Ligand Subs							
151 152	$X = HCONH_2$ $X = OC(NH_2)_2$		45 51	150 140	4 5	$-4.8 \pm 0.3 \\ -8.2 \pm 0.5$			
153	$X = OC(NH_{2/2})$ $X = OC(NHMe)_2$		49	170	4	-3.2 ± 0.3 -3.8 ± 0.2			
154	$X = MeCONMe_2$		45	100	3	-6.2 ± 0.4			
155	X = DMF		45	100	3	-7.4 ± 0.1			
156	$X = (MeO)_3PO$	11.0	45	100	3	-8.7 ± 0.1		1001	
157	$Cr(MeNH_2)_5Me_2SO^{3+} + H_2O \rightarrow Cr(MeNH_2)_5H_2O^{3+} + Me_2SO$	H_2O	25			-0.8 ± 1.1		120b	
158	$Cr(MeNH_2)_5HCONMe_2^{3+} + H_2O \rightarrow$	H_2O	25			-0.5 ± 0.3		120b	
	$Cr(Me_2NH_2)_5H_2O^{3+} + HCONMe_2$								
159	$Cr(Me_2NH_2)_5MeCONMe_2^{3+} + H_2O \rightarrow$	H_2O	25			-0.1 ± 1.2		120b	
160	$Cr(MeNH_2)_5H_2O^{3+} + MeCONMe_2$ $Cr(NH_3)_5Cl^{2+} + H_2O \rightarrow Cr(NH_3)_5(H_2O)^{3+} + Cl^{-}$	H_2O	33.5	100	5	$+17.0 \pm 0.9$		121	$[OH^{-}] = 0.2 \text{ M}, \mu =$
100	CI (IVII3)5CI + 1120 CI (IVII3)5(1120) + CI	1120	33.3	100	J	+17.0 ± 0.5		121	$1.0 \text{ M}(\text{ClO}_4^-)$
161	$Cr(NH_2CH_3)_5Cl^{2+} + H_2O \rightarrow$	H_2O	25	100	5	$+34.8\pm1.7$		121	$[OH^{-}] = 0.5 \text{ M}, \mu =$
	$Cr(NH_2CH_3)_5(H_2O)^{3+} + Cl^-$								1.0 M(ClO =)
162	$Cr(NH_3)_5I^{2+} + H_2O \rightarrow Cr(NH_3)_5(H_2O)^{3+} + I^-$	H_2O	17	100	5	$+22.2\pm0.6$		121	$1.0 \text{ M(ClO}_4^-)$ [OH ⁻] = 0.1 M, μ =
102	C1(1V113/51 + 112O C1(1V113/5(112O) + 1	1120	17	100	J	1 & & . & ± 0.0		121	$1.0 \text{ M}(\text{ClO}_4^-)$
163	$Cr(NH_3)_5(OC(CH_3)N(CH_3)_2)^{2+} + H_2O \rightarrow$	H_2O	29	100	5	$+25.0\pm0.7$		121	$[OH^{-}] = 0.1 \text{ M}, \mu =$
	$Cr(NH_3)_5(H_2O)^{3+} + CH_3CON(CH_3)_2$								$1.0~\mathrm{M}(\mathrm{ClO_4}^-)$
	$Cr(TPP)(Cl)L^{2+} \rightleftharpoons Cr(TPP)(Cl)^{2+} + L; k_1, k_2$	toluene	25	100	5			122	
164	$Cr(TPP)(Cl)^{2+} + MeIm \rightarrow Cr(TPP)(Cl)MeIm^{2+}; k_3$ $L = py, k_1$					$+25.7\pm0.5$			
165	$L = \text{py}, \ k_1$ $L = \text{py}, \ k_2/k_3$					$+1.3 \pm 1.1$			
166	$L = Qui, k_1$					$+23.8\pm0.6$			
167	$L = Qui, k_2/k_3$					-1.9 ± 1.6			
168	$L = PPh_3, k_1$					$+19.6 \pm 0.2$			
169	$L = PPh_3, k_2/k_3$ $trans-Cr(tmd)_2F_2^+ + H_2O \rightarrow$	H_2O	35-50	150	4	$+2.0 \pm 0.6$ -3.4 to -2.3		123	acidic solution
170	trans-Cr(tmd) ₂ (H ₂ O)F ²⁺ + F ⁻	1120	33 30	130	-1	3.4 to 2.3		123	acture solution
171	$trans$ -Cr(tmd) ₂ (F)Cl ⁺ + H ₂ O \rightarrow	H_2O	20 - 35	150	4	−8.8 to −7.7		123	acidic solution
	trans-Cr(tmd) ₂ (H ₂ O)F ²⁺ + Cl ⁻ Cr(CO) ₄ (DTH) + 2L \rightarrow Cr(CO) ₄ L ₂ + DTH								
172	$L = P(OMe)_3$	DCE	60	100	5	$+10.1\pm0.8$		124	
173	$L = P(OMe)_3$	CB	50	100	5	$+8.8\pm0.4$		124	
174	$L = P(OPr^i)_3$	DCE	60	125	5	$+10.4\pm0.4$		124	
175	$L = P(OPh)_3$	DCE	55.5	100	5	$+9.3\pm0.5$		124	G14
	$Cr(NH_3)_5(OSO_2CF_3)^{2+} + S \rightarrow Cr(NH_3)_5S^{3+} + CF_3OSO_2^-$			150	4			125	S = solvent
176	01,500.02	CH ₃ CN	25			-8.9 ± 0.5			
177		MeOH	20			-10.5 ± 0.7			
	$(bz)Cr(CO)_5 \rightleftharpoons Cr(CO)_5 + bz; k_1, k_{-1}$								
178	$\operatorname{Cr}(\operatorname{CO})_5 + \operatorname{pip} \to (\operatorname{pip})\operatorname{Cr}(\operatorname{CO})_5; \ k_2 $ k_1k_2/k_{-1}	C_6H_6	25	100	5	$+4.2\pm0.3$		126	
179	k_{-1}	C_6H_6	25	100	5	$+12.3 \pm 1.4$		126	
	$Cr(phen)(CO)_4 + P(OMe)_3 \rightleftharpoons$	- 0							
	fac -Cr(phen)(CO) ₃ (P(OMe) ₃) + CO; k_1 , k_{-1}								
180	k_1	DCE	50	100	5		-4 ± 1 (b)	127	
181	k_{-1} trans-Cr(tn) ₂ Cl ₂ ⁺ + H ₂ O \rightarrow	DCE H ₂ O	35	100 150	5 4	$+19.2 \pm 0.5$		127 128	
	trans- $Cr(tn)_2Cl(H_2O)^{2+} + Cl^-$	1120		150	-1			120	
182			35			-2.02			
183			40			-1.93 -1.78			
184 185			45 50			-1.76 -1.7			
100	$trans$ -Cr(tn)(en)Cl ₂ ⁺ + H ₂ O \rightarrow	H_2O		150	4			128	
	trans-Cr(tn)(en)Cl(H ₂ O) ²⁺ + Cl ⁻								
186			35			-2.99			
187			40			-2.75			
188			45			-2.69			
189			50			-2.53			
	$Mn(CO)_5Br + bpy \rightarrow Mn(CO)_3(bpy)Br + CO$	M. OH	25.5	100	3	. 00		129	
190 191		MeOH MeOH-H ₂ O				$^{+22}_{-20}$			
	$M_{\mathcal{D}}(CO) \subset \mathbb{R} + d_0 h \to M_{\mathcal{D}}(CO) (d_0 h) \subset \mathbb{R} + CO$	toluene	30	150	4	$+20.6 \pm 0.4$		130	
	$MIRCO_{5}CI + Gab - MIRCO_{3}Gab/CI + CO$	acetone	29.5	140	5	$+20.6\pm2.6$		31	
192	$Mn(CO)_5Cl + dab \rightarrow Mn(CO)_3(dab)Cl + CO$ $Mn(CO)_5Cl + [9]aneS_3 \rightarrow$			100	~	105105		100	
192 193	$Mn(CO)_5Cl + [9]aneS_3 \rightarrow$ $([9]aneS_3)Mn(CO)_3Cl + CO$	DME		120	7	$+9.5\pm0.5$		132	
192 193	$\begin{array}{l} Mn(CO)_5Cl + [9]aneS_3 \rightarrow \\ ([9]aneS_3)Mn(CO)_3Cl + CO \\ Mn(DMF)_6^{2+} + Et_2DTC^- \rightarrow \end{array}$	DMF	-45						
192 193 194	$\begin{array}{l} Mn(CO)_5Cl + [9]aneS_3 \rightarrow \\ ([9]aneS_3)Mn(CO)_3Cl + CO \\ Mn(DMF)_6^{2+} + Et_2DTC^- \rightarrow \\ Mn(DMF)_4(Et_2DTC)^+ + 2DMF \end{array}$			250	6	6	$+7.8 \pm 0.1$ (a)	133	$\mu = 1.0 \text{ M}, [H^+] = 1.0 \text{ M}$
192 193 194 195	$\begin{array}{l} Mn(CO)_5Cl + [9]aneS_3 \rightarrow \\ ([9]aneS_3)Mn(CO)_3Cl + CO \\ Mn(DMF)_6^{2+} + Et_2DTC^- \rightarrow \end{array}$	DMF H ₂ O H ₂ O	-45 25 25	250 250	6 6	6 6	$+7.8 \pm 0.1$ (a) -16.5 ± 0.9 (a)		
192 193 194 195 196 197	$\begin{array}{l} Mn(CO)_5Cl + [9]aneS_3 \rightarrow \\ ([9]aneS_3)Mn(CO)_3Cl + CO \\ Mn(DMF)_6^{2+} + Et_2DTC^{-} \rightarrow \\ Mn(DMF)_4(Et_2DTC)^{+} + 2DMF \\ Fe^{3+} + Hipt \rightarrow Fe(ipt)^{2+} + H^{+} \\ Fe(ipt)^{2+} + H^{+} \rightarrow Fe^{3+} + Hipt \\ Fe^{3+} + ClO_2^{-} \rightleftharpoons FeClO_2^{2+} \end{array}$	H ₂ O H ₂ O H ₂ O	25 25 5	250 150	6 5	6 5		133 134	
192 193 194 195 196 197 198	$\begin{array}{l} Mn(CO)_5Cl + [9]aneS_3 \rightarrow \\ ([9]aneS_3)Mn(CO)_3Cl + CO \\ Mn(DMF)_6^2 + Et_2DTC \rightarrow \\ Mn(DMF)_4(Et_2DTC)^+ + 2DMF \\ Fe^{3+} + Hipt \rightarrow Fe(ipt)^{2+} + H^+ \\ Fe(ipt)^{2+} + H^+ \rightarrow Fe^{3+} + Hipt \\ Fe^{3+} + ClO_2^- \rightleftharpoons FeClO_2^{2+} \\ Fe(OH)^{2+} + HClO_2 \rightarrow FeClO_2^{2+} + H_2O \end{array}$	H_2O H_2O H_2O H_2O	25 25 5 5	250 150 150	6 5 5	$6\\5\\+6.9\pm2.3$	-16.5 ± 0.9 (a)	133 134 134	$\mu = 1.0 \text{ M}, [H^+] = 1.0 \text{ M}$
192 193 194 195 196 197 198	Mn(CO) ₅ Cl + [9]aneS ₃ → ([9]aneS ₃)Mn(CO) ₃ Cl + CO Mn(DMF) ₆ ²⁺ + Et ₂ DTC → Mn(DMF) ₄ (Et ₂ DTC) ⁺ + 2DMF Fe ³⁺ + Hipt → Fe(ipt) ²⁺ + H ⁺ Fe(ipt) ²⁺ + H ⁺ → Fe ³⁺ + Hipt Fe ³⁺ + ClO ₂ → FeClO ₂ ²⁺ Fe(OH) ²⁺ + HClO ₂ → FeClO ₂ ²⁺ + H ₂ O Fe(bpy) ₃ ²⁺ + CN → products	H_2O H_2O H_2O H_2O H_2O	25 25 5 5 25	250 150 150 100	6 5 5 4	$6\\5\\+6.9\pm2.3\\+12.2$	-16.5 ± 0.9 (a)	133 134 134 135	$\mu = 1.0 \text{ M}, [\text{H}^+] = 1.0 \text{ M}$ $\mu = 0.33 \text{ M} \text{ (NaCl)}$
192 193 194 195 196 197 198 199 200	$\begin{array}{l} Mn(CO)_5Cl + [9]aneS_3 \longrightarrow \\ ([9]aneS_3)Mn(CO)_3Cl + CO \\ Mn(DMF)_6^2 + Et_2DTC^- \longrightarrow \\ Mn(DMF)_4(Et_2DTC)^+ + 2DMF \\ Fe^{3+} + Hipt \longrightarrow Fe(ipt)^{2+} + H^+ \\ Fe(ipt)^{2+} + H^+ \longrightarrow Fe^{3+} + Hipt \\ Fe^{3+} + ClO_2^- \rightleftharpoons FeClO_2^{2+} \\ Fe(OH)^{2+} + HClO_2 \longrightarrow FeClO_2^{2+} + H_2O \\ Fe(bpy)_3^{2+} + CN^- \longrightarrow products \\ Fe(phen)_3^{2+} + CN^- \longrightarrow products \end{array}$	H ₂ O H ₂ O H ₂ O H ₂ O H ₂ O H ₂ O H ₂ O	25 25 5 5 25 25	250 150 150 100 100	6 5 5	$6\\5\\+6.9\pm2.3\\+12.2\\+10.5$	-16.5 ± 0.9 (a)	133 134 134	$\mu = 1.0 \text{ M}, [\text{H}^+] = 1.0 \text{ M}$ $\mu = 0.33 \text{ M} \text{ (NaCl)}$ $\mu = 0.33 \text{ M} \text{ (NaCl)}$
192 193 194 195 196 197 198 199 200 201	Mn(CO) ₅ Cl + [9]aneS ₃ → ([9]aneS ₃)Mn(CO) ₃ Cl + CO Mn(DMF) ₆ ²⁺ + Et ₂ DTC → Mn(DMF) ₄ (Et ₂ DTC) ⁺ + 2DMF Fe ³⁺ + Hipt → Fe(ipt) ²⁺ + H ⁺ Fe(ipt) ²⁺ + H ⁺ → Fe ³⁺ + Hipt Fe ³⁺ + ClO ₂ → FeClO ₂ ²⁺ Fe(OH) ²⁺ + HClO ₂ → FeClO ₂ ²⁺ + H ₂ O Fe(bpy) ₃ ²⁺ + CN → products	H_2O H_2O H_2O H_2O H_2O	25 25 5 5 25	250 150 150 100	6 5 5 4 4	$6\\5\\+6.9\pm2.3\\+12.2$	-16.5 ± 0.9 (a)	133 134 134 135 135	$\mu = 1.0 \text{ M}, [\text{H}^+] = 1.0 \text{ M}$ $\mu = 0.33 \text{ M} \text{ (NaCl)}$
192 193 194 195 196 197 198 199 200 201 202 203	$\begin{array}{l} Mn(CO)_5Cl + [9]aneS_3 \longrightarrow \\ ([9]aneS_3)Mn(CO)_3Cl + CO \\ Mn(DMF)_6^2 + Et_2DTC^- \longrightarrow \\ Mn(DMF)_4(Et_2DTC)^+ + 2DMF \\ Fe^{3+} + Hipt \longrightarrow Fe(ipt)^{2+} + H^+ \\ Fe(ipt)^{2+} + H^+ \longrightarrow Fe^{3+} + Hipt \\ Fe^{3+} + ClO_2^- \rightleftharpoons FeClO_2^{2+} \\ Fe(DH)^{2+} + HClO_2 \longrightarrow FeClO_2^{2+} + H_2O \\ Fe(bpy)_3^{2+} + CN^- \longrightarrow products \\ Fe(phen)_3^{2+} + CN^- \longrightarrow products \\ Fe(4,4'-Me_2bpy)_3^{2+} + CN^- \longrightarrow products \\ \end{array}$	H ₂ O H ₂ O	25 25 5 5 25 25 25	250 150 150 100 100 100	6 5 5 4 4 4	$6\\5\\+6.9\pm2.3\\+12.2\\+10.5\\+12.3$	-16.5 ± 0.9 (a)	133 134 134 135 135 135 135 136	$\mu = 0.33 \text{ M (NaCl)}$ $\mu = 0.33 \text{ M (NaCl)}$

Table 1. (Continued)

	Die 1. (Continued)		T	<i>P</i> ,	no. of	ΔV^{\dagger} ,	$\Delta \bar{V}$, cm ³ mol ⁻¹		
no.	reaction	solvent	<i>T</i> , °C		data	cm ³ mol ⁻¹	(method)	ref(s)	remarks
205		Substitution I DMF	Reaction 25	ons (C		ued)	$+25.1 \pm 0.3$ (b)	126	$[NaClO_4] = 0.2 M$
203	$Fe(CN)_5L^{3-} + CN^- \rightarrow Fe(CN)_6^{4-} + L$	DIVII	25	100			+23.1 ± 0.3 (b)	137	$[NaClO_4] = 0.2 \text{ M}$
206	L = 4-(1-butylpentyl)pyridine	$H_2O-MeOH$				+16			
207	L = 4-phenylpyridine	H ₂ O				+10			
208 209	$L = N \cdot (n \cdot pentyl)$ pyrazinium (Na ₂ salt) L = pyrazine	H ₂ O H ₂ O				+10 +13			
209	Fe(CN) ₅ L ³⁻ + CN ⁻ \rightleftharpoons Fe(CN) ₆ ⁴⁻ + L	H ₂ O	25		4	⊤13		138	
210	L = 4-CNpy	1120	20	100	•	$+19.0\pm0.5$	$(+8.0 \pm 1.5)$	100	$\mu = 0.1 \text{ M (CN}^-) +$
									5.0 M (NaCl)
211	L = 4.4'-bpy			100 130			$(+15.6 \pm 1.5)$		$\mu = 0.1 \text{ M (CN}^-)$
212	$L = 4^{-1}Bupy$ $Fe(CN)_5(NO_2)^{3-} + H_2O \rightarrow Fe(CN)_5(H_2O)^{2-} + NO_2^{-1}$	H_2O	25	100	5	$\pm 11.4 \pm 1.0$	$(+9.1 \pm 1.5)$	139	$\mu = 0.1 \text{ M (CN}^-)$ $\mu = 0.5 \text{ M (LiClO}_4)$
213	10(011)3(1102) 11120 10(011)3(1120) 11102	1120	20	100	Ü	$+2.2\pm0.1$		100	$[H^+] = 0.2 \text{ M (HCl)}$
214						$+1.9\pm0.1$			$[H^+] = 0.5 \text{ M (HCl)}$
	$Fe(CN)_5(NO_2)^{3-} + DMF \rightarrow Fe(CN)_5(DMF)^{2-} + NO_2^{-}$	DMF	25	100	5	$+26.9 \pm 1.5$		140	$0.5\%~\mathrm{H_2O}$
	$Fe(CN)_5(NO_2)^{3-} + DMSO \rightarrow Fe(CN)_5(DMSO)^{2-} + NO_2^{-}$ $Fe(CN)_5(NO_2)^{3-} + MeOH \rightarrow Fe(CN)_5(MeOH)^{2-} + NO_2^{-}$	DMSO MeOH	25 45	75 100	4 5	$+25.9 \pm 1.1$ $+19.6 \pm 1.8$		140 140	0.5% H ₂ O
	$Fe(CN)_5(NO_2)^4 + HeOH^4 + Fe(CN)_5(MeOH)^4 + NO_2^4$ $Fe(CN)_5(NO)_2^{4-} + H_2O \rightarrow Fe(CN)_5(H_2O)^{3-} + NO_2^{-}$	H ₂ O	25	125	5	$+19.0 \pm 1.0$ $+20.1 \pm 1.0$		139	$[OH^{-}] = 0.1 \text{ M}$
~10	$Fe(CN)_5(L)^{3-} + CN^- \rightarrow Fe(CN)_6^{4-} + L$	H ₂ O	25	150	$^{4-5}$. 2011 = 110		141	[011] 011.11
219	$L = p-(CH_3CH_2CH_2)_2CHC_5H_4N$	20% MeOH				$+16.3\pm1.4$			
220	$L = p \cdot (C_5 H_4 N)_2$	H ₂ O				$+13.6 \pm 0.5$			
221 222	$L = p-(C_6H_5)(C_5H_4N)$	H ₂ O 40% MeOH				$+10.4 \pm 0.5 \\ +11.2 \pm 1.5$			
223	$L = p - CH_3(CH_2)_5NC_4H_4N^+$	H ₂ O				$+9.6 \pm 0.8$			
224	2 p 313((312)); (3414);	40% MeOH				$+2.3 \pm 0.9$			
225		80% MeOH				$+13.2\pm0.9$			
226		40% isopropyl				-3.1 ± 0.6			
227	$L = p \cdot C_6 H_4 N_2 C_2 H_2$	alcohol H ₂ O				$+17.9 \pm 0.4$			
228	<i>p</i> 001141 (202112	40% MeOH				$+19.2 \pm 0.5$			
229	$L = p-(CH_3)_3CC_5H_4N$	H_2O				$+11.4\pm1.0$			
230		40% MeOH				$+20.1\pm0.9$			
231		17% <i>tert</i> -butyl alcohol				$+12.0 \pm 0.8$			
232		40% Me ₂ CO				$+19.5\pm1.2$			
233	$L = p\text{-NCC}_5H_4N$	H_2O				$+19.0\pm1.0$			
234	I GHGHN+	40% MeOH				$+11.8 \pm 0.7$			
235 236	$L = p - CH_3C_4H_4N_2^+$	H ₂ O 40% MeOH				$+0.9 \pm 0.5 \\ -6.1 \pm 0.9$			
237		80% MeOH				-0.1 ± 0.5 -2.4 ± 0.6			
238		40% isopropyl				$+8.0 \pm 0.8$			
000	LCHN	alcohol				1105 10			
239 240	$L = C_4 H_4 N_2$	H ₂ O 40% MeOH				$+12.5 \pm 1.2$ $+14.4 \pm 1.5$			
241	$L = p - CH_3C_4H_4N_2^+$	H ₂ O				$+20.9 \pm 0.5$			
242	$Fe(CN)_5(4-CNpy)^{3-} + CN^- \rightarrow Fe(CN)_6^{4-} + 4CNpy$	$H_2^{\circ}O$	25	100	4	$+19.0\pm1.0$		142	$[CN^{-}] = 0.10 \text{ M}$
	$Fe(CN)_5(4,4'-bpy)^{3-} + CN^- \rightarrow Fe(CN)_6^{4-} + 4,4'-bpy$	H ₂ O	25	100	4	$+13.5 \pm 0.7$		143	$[CN^{-}] = 0.10 \text{ M}$
244	$Fe(CN)_5(4-t-bupy)^{3-} + CN^- \rightarrow Fe(CN)_6^{4-} + 4-t-bupy$ $Fe(CN)_5(NH_2R)^{3-} + py \rightarrow Fe(CN)_5(py)^{3-} + NH_2R$	H ₂ O H ₂ O	25	125 100	4 5	$+11.4 \pm 1.0$		143 144	$[CN^{-}] = 0.10 \text{ M}$
245	R = H	1120	40	100	J	$+16.4\pm0.6$		144	
246	$R = CH_3$		40			$+24.0\pm1.0$			
247	$R = C_2 H_5$		40			$+16.3\pm1.5$			
248	$R = PhCH_2$		40			$+17.4 \pm 1.4$			
249	$R = {}^{i}Pr$ $Fe(CN)_{5}H_{2}O^{3-} + L^{n-} \rightarrow Fe(CN)_{5}L^{(3+n)-} + H_{2}O$	H ₂ O	25 25	100	4	$+18.5 \pm 0.6$		145	$\mu = 0.1 \text{ M}$
250	$L^{n-} = \text{imidazole}$	1120	20	100	4	$+15.5 \pm 0.7$		140	pH = 7.0
251	L^{n-} = histidine					$+17.0\pm0.4$			pH = 7.5
252	L^{n-} = methionine					$+17.9 \pm 0.6$			pH = 6.5
253 254	L^{n-} = glutathione					$+14.1 \pm 0.4$			pH = 6.0
255	$L^{n-}=$ glycine $L^{n-}=eta$ -alanine					$+16.4 \pm 0.6 +16.8 \pm 0.2$			pH = 11.7 pH = 11.7
200	$Fe(CN)_5H_2O^{2-} + L \rightarrow Fe(CN)_5L^{2-} + H_2O$	H_2O	40	150	4	10.0 ± 0.2		146	pH = 6.0
256	L = cytosine					$+2.5\pm0.5$			•
257	L = cytidine					$+9.5 \pm 1.2$			
258	$L = CMP$ Fe(5-Brphen) ₃ ²⁺ + H ₂ O \rightarrow	H_2O	25	100	7	$+12.8 \pm 1.1 +23.0$		147	
200	5-Brphen + Fe(5-Brphen) $(H_2O)_2^{2+}$	1120	20	100	•	1 23.0		177	
260	Fe(DMF) ₆ ²⁺ + Et ₂ DTC ⁻ \rightarrow Fe(DMF) ₄ (Et ₂ DTC) ⁺ + 2DMF	DMF	-35	160	9	$+12.3\pm0.8$		132	$\mu = 0.10 \text{ M (NaClO}_4)$
	$Fe(DMF)_6^{2+} + Paa \rightarrow Fe(DMF)_4(Pada)^{2+} + 2DMF$	DMF	-35	160	9	$+7.5 \pm 1.0$	-2.0 ± 0.3 (a)		$\mu = 0.10 \text{ M (NaClO4)}$
	$Fe(DMF)_4(Pada)^{2+} + 2DMF \rightarrow Fe(DMF)_6^{2+} + Pada$	DMF	-35	160	9	$+9.5 \pm 1.3$	99 107()	132	$\mu = 0.10 \text{ M (NaClO_4)}$
	$Fe(Ah)_3 + H^+ + 2H_2O \rightarrow Fe(H_2O)_2(Ah)_2^+ + HAh$ $Fe(H_2O)_2(Ah)_2^+ + H^+ + 2H_2O \rightarrow Fe(H_2O)_4Ah^{2+} + HAh$	H ₂ O H ₂ O	-0.5	100 100	5 5	-5.4 ± 0.5 -9.1 ± 0.6	-3.2 ± 0.7 (a) -6.9 ± 0.5 (a)		$\mu = 2.0 \text{ M (NaClO}_4)$ $\mu = 2.0 \text{ M (NaClO}_4)$
	$Fe(H_2O)_2(AH)_2 + H^+ + 2H_2O \rightarrow Fe(H_2O)_6^{3+} + HAh$	H ₂ O	25	100	5	-15.6 ± 1.5	-9.3 ± 0.3 (a)		$\mu = 2.0 \text{ M} \text{ (NaClO}_4)$ $\mu = 2.0 \text{ M} \text{ (NaClO}_4)$
266	$Fe(H_2O)_4Ah^{2+} + 2H_2O \rightarrow Fe(H_2O)_5(OH)^{2+} + HAh$	H_2O	25	100	5	-3.3 ± 0.6		148	$\mu = 2.0 \text{ M (NaClO}_4)$
	$Fe(H_2O)_5(OH)^{2+} + HAh \rightarrow Fe(H_2O)_4Ah^{2+} + 2H_2O$	H ₂ O	25	100	5	$+5.2 \pm 0.5$		148	$\mu = 2.0 \text{ M (NaClO4)}$
	$Fe(H_2O)_6^{3+} + HAh \rightarrow Fe(H_2O)_4(Ah)^{2+} + H^+ + 2H_2O$	H ₂ O	25 25	100	5	-6.3 ± 1.4		148	$\mu = 2.0 \text{ M (NaClO_4)}$
	$Fe(H_2O)_4Ah^{2+} + HAh \rightarrow Fe(H_2O)_2(Ah)_2^+ + H^+ + 2H_2O$ $Fe(H_2O)_2Ah_2^+ + HAh \rightarrow Fe(Ah)_3^+ + H^+ + 2H_2O$	H ₂ O H ₂ O	25 25	100 100	5 5	-2.2 ± 0.5 -2.2 ± 0.9		148 148	$\mu = 2.0 \text{ M (NaClO}_4)$ $\mu = 2.0 \text{ M (NaClO}_4)$
	$Fe(H_2O)_2AH_2 + HAH + Fe(AH)_3 + H + 2H_2O$ $Fe(H_2O)_5(OH)^{2+} + H_4dfb^+ \rightarrow Fe(H_2O)_4(H_3dfb)^{3+} + 2H_2O$	H ₂ O	25	100	5	$-2.2 \pm 0.5 +4.3 \pm 0.5$		148	$\mu = 2.0 \text{ M} \text{ (NaClO}_4)$ $\mu = 2.0 \text{ M} \text{ (NaClO}_4)$
	$Fe(H_2O)_6{}^{3+} + H_4dfb^+ {\:\rightarrow\:} Fe(H_2O)_4(H_3dfb)^{3+} + H^+ + 2H_2O$		25	100	5	-4.7 ± 1.6		148	$\mu = 2.0 \text{ M (NaClO4)}$
	$FeL_3^{2+} + NaOH \rightarrow products$	H_2O	25					149	

Table 1. (Continued)

no.	reaction	solvent		MPa	no. of data	cm ³ mol ⁻¹	ΔV , cm ³ mol ⁻¹ (method)	ref(s)	remarks
273		and Substitutio	n Re	eaction 140	ons (C	ontinued) $+12.8 \pm 0.4$			$\mu = 0.01 \text{ M}$
274	L = phen			140	6	$+14.2\pm0.8$			$\mu = 0.005 \text{ M}$
275	L = 3-Mebsb			120	3	$+13.6 \pm 1.8$			$\mu = 0.33 \text{ M (KOH)}$
276	$L = 4-MeObsb$ $FeL_3^{2+} + H_2O \rightarrow products$	H_2O	25	100	4	$+12.0 \pm 2.1$		149	$\mu = 0.33 \text{ M (KOH)}$ (edta)
277	L = 5-Brphen	1120	20		6	$+22.3 \pm 1.0$		143	$\mu = 0.030 \text{ M}$
278	~1				5	$+21.7\pm1.0$			$\mu = 0.030 \text{ M}$
	$Fe(gmi)_3^{2+} + OH^- \rightarrow Fe(OH)^+ + 3gmi$	H ₂ O		100	3	+16.7		150	
280 281		20% CH ₃ OH 40% CH ₃ OH		100 140	3 5	$+16.2 \\ +15.5$			
282		50% CH ₃ OH		100	3	+12.6			
283		60% CH ₃ OH	25		3	+8.1			
284		80% CH ₃ OH		100	3	+4.9			
285 286		$20\% C_2H_5OH$ $30\% C_2H_5OH$	25 25	100 100	3 3	$+15.0 \\ +15.0$			
287		40% C ₂ H ₅ OH		100	3	+10.0			
288		50% C ₂ H ₅ OH		100	3	+3.3			
289		20% <i>i</i> -C ₃ H ₇ OH		100	3	+15.3			
290 291		30% <i>i</i> -C ₃ H ₇ OH 40% <i>i</i> -C ₃ H ₇ OH		100 100	3 3	$+13.7 \\ +9.7$			
292		50% <i>i</i> -C ₃ H ₇ OH		100	3	+7.6			
293		60% <i>i</i> -C ₃ H ₇ OH		100	3	+5.8			
294 295		10% <i>t</i> -C ₄ H ₉ OH 17% <i>t</i> -C ₄ H ₉ OH		100 100	3 3	$+14.9 \\ +12.2$			
296		30% <i>t</i> -C ₄ H ₉ OH		100	3	+7.4			
297		50% <i>t</i> -C ₄ H ₉ OH		100	3	+4.0			
298	- / 200	20% (H ₃ C) ₂ CO		100	3	+11.0			
299	$\text{Fe(gmi)}_3^{2+} + \text{OH}^- \rightarrow \text{Fe(OH)}^+ + 3\text{gmi}$	H ₂ O	25	100	3	114.1		151	$\mu = 0.33 \text{ M (NaCl)}$
300		20% egly 30% egly				$+14.1 \\ +15.7$			
301		40% egly				+17.7			
	$Fe^{3+} + X^{n-}$	H_2O	25	200	7			152	
	$Fe(H_2O)_6^{3+} + NCS^- \rightarrow Fe(H_2O)_5(NCS)^{2+} + H_2O$ $Fe(H_2O)_5(OH)^{2+} + NCS^- \rightarrow Fe(H_2O)_5(NCS)^+ + H_2O$					$-5.7 \pm 0.3 + 9.0 \pm 0.4$	$+11.8 \pm 0.3$ (a)		
	$Fe(H_2O)_5(OH) \rightarrow Fe(H_2O)_5(NeS) \rightarrow H_2O$ $Fe(H_2O)_6^{3+} + HN_3 \rightarrow Fe(H_2O)_5N_3^{2+} + H_2O + H^+$					13.0 ± 0.4	$+3.8 \pm 0.8$ (a)		
305	$Fe(H_2O)_5(OH)^{2+} + HN_3 \rightarrow Fe(H_2O)_5N_3^{2+} + H_2O$					$+6.8\pm0.5$			
	$Fe(H_2O)_6^{3+} + N_3^- \rightarrow Fe(H_2O)_5N_3^{2+} + H_2O$					$+16.5 \pm 0.5$			
307	$Fe(H_2O)_5(OH)^{2+} + N_3^- \rightarrow Fe(H_2O)_5N_3^{2+} + OH^-$ $Fe(hxsb)^{2+} + OH^- \rightarrow Fe(OH)^+ + hxsb$		25			$+12.9 \pm 1.5$		153	
308		H ₂ O	20	130	5	$+13.3 \pm 1.9$		133	$[OH^{-}] = 0.33 \text{ M}$
309		50% MeOH		130	5	+14.0			$[OH^{-}] = 0.33 \text{ M}$
310		75% MeOH		130	5	$+6.2 \pm 0.6$			$[OH^{-}] = 0.33 \text{ M}$
311 312		75% MeOH 85% MeOH		130 130	4	$+5.5 \pm 1.2 \\ +6.8$			$[OH^{-}] = 0.10 \text{ M}$ $[OH^{-}] = 0.33 \text{ M}$
313		35% Pr ⁱ OH		100	3	+9			$[OH^{-}] = 0.30 \text{ M}$
314		67% Pr ⁱ OH		100	3	-2.5			$[OH^{-}] = 0.10 \text{ M}$
315		17% Bu ^t OH		130	4	$+14.1 \pm 1.1$			$[OH^{-}] = 0.33 \text{ M}$
316 317		38% Bu ^t OH 50% Bu ^t OH		130 120	2	$^{+12}$ $^{-4.2}$			$[OH^{-}] = 0.10 \text{ M}$ $[OH^{-}] = 0.10 \text{ M}$
	$Co(DMF)_6^{2+} + Et_2DTC^- \rightarrow Co(DMF)_4Et_2DTC^+ +$		-35	160	9	$+12.1 \pm 0.6$		132	$\mu = 0.10 \text{ M (NaClO4)}$
210	2DMF $Co(H_2O)_6^{2+} + Cl$ -phen $\rightarrow Co(Cl$ -phen) $(H_2O)_4^{2+} + 2H_2O$	но	95	150	7	166102	G 4 0 9 (a)	154	
	$Co(Cl-phen)(H_2O)_4^{2+} + 2H_2O \rightarrow Co(H_2O)_6^{2+} + Cl-phen$			150	7 7	$+0.0 \pm 0.3 +0.2 \pm 0.4$	$+6.4 \pm 0.8$ (a)	154 154	
	trans-Co(tacpa)Cl ²⁺ + OH ⁻ \rightarrow products	H ₂ O		140	·	$+27.1 \pm 0.4$		117	
	$Co(edta)^- + H^+ + H_2O \rightarrow Co(hedta)OH_2$	H_2O		230	7	$+3.5\pm0.7$		155	
	Co(hedta)OH ₂ \rightarrow Co(edta) ⁻ + H ⁺ + H ₂ O α -Co(tetren)Cl ²⁺ + H ₂ O \rightarrow α -Co(tetren)OH ₂ ³⁺ + Cl ⁻	H_2O H_2O	85 80	230 100	7 5	$+6.7 \pm 0.7 \\ -3.6 \pm 0.9$		155 156	$\mu = 1.0 \text{ M (HClO}_4)$
	α -Co(tetren)Cl ²⁺ + OH ⁻ $\rightarrow \alpha$ -Co(tetren)OH ²⁺ + Cl ⁻	H ₂ O	80		5	-3.0 ± 0.3 $+42 \pm 1.3$			$\mu = 1.0 \text{ M (HClO}_4)$ $\mu = 1.0 \text{ M (HClO}_4)$
326	β -Co(tetren)Cl ²⁺ + H ₂ O $\rightarrow \beta$ -Co(tetren)OH ₂ ³⁺ + Cl ⁻	H_2O		100	5	-1.7 ± 1.0			$\mu = 1.0 \text{ M (HClO}_4)$
	β -Co(tetren)Cl ²⁺ + OH ⁻ $\rightarrow \beta$ -Co(tetren)OH ²⁺ + Cl ⁻	H ₂ O	60		5	$+35 \pm 1.0$		156	$\mu = 0.01 \text{ M (HClO}_4)$
	$Co(NH_3)_5Cl^{2+} + H_2O \rightarrow products$ $Co(tmen)_3^{3+} + OH^- \rightarrow products$	H ₂ O H ₂ O		100 100	5 5	$-7.4 \pm 0.6 \\ +57.6 \pm 0.9$			$\mu = 0.01 \text{ M (HClO}_4)$ $\mu = 0.1 \text{ M (NaClO}_4)$
330		1120	دی	100	3	$+57.0 \pm 0.3$ $+59.1 \pm 0.3$			$\mu = 0.1 \text{ M (NaClO4)}$ $\mu = 1.0 \text{ M (NaClO4)}$
331	$Co(TAPP)(H_2O)_2^{5+} + NCS^- \rightarrow$	H_2O	25	150	5	$+18.8\pm0.8$		158	$pH = 1$, $\mu = 1.0 \text{ M} (NaNO_3)$
	$C_0(TAPP)(H_2O)(NCS)^{4+} + H_2O$	H_2O	95	100	=			159	
332	$\begin{array}{l} \text{dmbzim-Co-H}_2O + L \rightarrow \text{dmbzim-Co-L} + H_2O \\ L = N_3^- \end{array}$	1120	23	100	5	$+6.4\pm0.1$	-9.9 (b)	133	
333	•					$+5.5 \pm 0.3$	0.0 (5)		
	trans- $[C_0(NH_3)_4Cl_2]^+ + H_2O \rightarrow$	H_2O	16	200	5		-12.0 (b) (trans)	160	
335		11.0	40	900	-	110	-14.0 (b) (cis)	100	IIIClO 1 – 1 ····M
330	trans-[Co(en) ₂ Cl ₂] ⁺ + H ₂ O → $74\% t$, 26% c-[Co(en) ₂ (H ₂ O)Cl] ²⁺ + Cl ⁻	H_2O	40	200	5	+1.8	-9.1 (b)	160	[HClO4] = 1 mM $[HNO3] = 7.6 mM$
337	cis-[Co(en) ₂ Cl ₂] ⁺ + H ₂ O \rightarrow	H_2O	30	200	6	-0.3	-18.6 (b)	160	$[HClO_4] = 1.1 \text{ mM}$
	cis-[Co(en) ₂ (H ₂ O)Cl] ²⁺ + Cl ⁻	_							$[HNO_3] = 0.6 \text{ mM}$
338	trans-[Co(trien)Cl ₂] ⁺ + H ₂ O → cis - β -[Co(trien)(H ₂ O)Cl] ²⁺ + Cl ⁻	H_2O	10	200	6	+1.1	-8.8 (b)	160	$[HClO_4] = 1.0 \text{ mM}$
339	$cis-\rho$ -[Co(trien)(H ₂ O)Cl ₂] ⁺ + H ₂ O \rightarrow	H_2O	32	200	6	-1.9	-10.0 (b)	160	$[HClO_4] = 10 \text{ mM}$
	cis - α -[Co(trien)(H ₂ O)Cl] ²⁺ + Cl ⁻								
340	cis - β -[Co(trien)Cl ₂] ⁺ + H ₂ O → cis - β -[Co(trien)(H ₂ O)Cl] ²⁺ + Cl ⁻	H_2O	15	200	6	-0.1	$+1.9 \pm 0.8$ (b)	160	$[HClO_4] = 1.0 \text{ mM}$
341	cis - α -[Co(edda)Cl ₂] ⁻ + H ₂ O \rightarrow	H_2O	31	200	6	+3.2	-7.4 (b)	160	$[HClO_4] = 9.6 \text{ mM}$
	cis - α -[Co(edda)(H ₂ O)Cl] + Cl ⁻								

Table 1. (Continued)

no.	reaction	solvent	<i>T</i> , °C		no. of data	${\Delta V^{\! \pm}, top m cm^3 mol^{-1}}$	ΔV , cm ³ mol ⁻¹ (method)	ref(s)	remarks
		Substitutio						100	[770]0] 40 14
342	cis-α-[Co(edda)(H ₂ O)Cl] + H ₂ O → cis-α-[Co(edda)(H ₂ O) ₂] ⁺ + Cl ⁻	H_2O	47	200	6	+0.8		160	$[HClO_4] = 1.0 \text{ mM}$
343	trans- $[Co(en)_2Br_2]^+ + H_2O \rightarrow$	H_2O	25	200	6	+1.0		160	$[HClO_4] = 10 \text{ mM}$
	85% t , 15% c -[Co(en) ₂ (H ₂ O)Br] ²⁺ + Br ⁻ Co(NH ₃) ₅ X ²⁺ + H ₂ O \rightarrow Co(NH ₃) ₅ (H ₂ O) ²⁺ + X ⁻	H_2O		200	5			161	$[HClO_4] = 100 \text{ mM}$
344	$X = Cl^-$		65			-6.0			
345 346	$X = Br^-$ $X = NO_3^-$		54 40			$-6.4 \\ -5.7$			
	$Co(en)_2(NH_3)X^{2+} + H_2O \rightarrow$	H_2O		200	5			161	
347	$C_0(en)_2(NH_3)(H_2O)^{2+} + X^-$ $X = trans\text{-}Cl^-$		70			-5.0	-17.3 (b)		$[HClO_4] = 100 \text{ mM}$
348	$X = trans-Br^-$		60			-3.1	-14.7 (b)		[HClO4] = 1 mM
349	$X = cis$ -Br $^-$		60			-5.6	-16.1 (b)		$[HClO_4] = 100 \text{ mM}$
350	$X = cis-NO_3^-$ $cis-Co(en)_2(OH_2)_2^{3+} + XO_4^{2-}/HXO_4^- \rightarrow$	H_2O	45 55	140	3	-6.1	-13.2 (b)	162	$[HClO_4] = 100 \text{ mM}$ $pH = 2.0, \mu = 1.0 \text{ M}$
051	$H_2O + cis\text{-Co(en)}_2(OH_2)(XO_4)^+$	2 -				100105			(NaClO ₄)
351 352	X = S X = Se					$+8.3 \pm 0.5 \\ +8.5 \pm 0.4$			
	cis -Co(en) ₂ (OH ₂)(XO ₄) ⁺ + H ₂ O \rightarrow	H_2O	55	140	3			162	$pH = 2.0, \mu = 1.0 M$
353	$XO_4^{2-} + cis\text{-Co(en)}_2(OH_2)_2^{3+}$ X = S					$+2.2\pm0.4$			(NaClO ₄)
354	X = Se					$+3.3 \pm 0.7$			
255	cobalt(III) ammine base hydrolysis $Co(NH_3)_5OC(Me)N(Me)_2^{3+} + OH^- \rightarrow$	H_2O	15	100	5	⊥42 9 ⊥ 1 7		163	[OU-] = 25 mM ,, = 24 mN
333	$Co(NH_3)_5OC(Me)N(Me)_2$ + OH $Co(NH_3)_5OH^{2+} + MeCONMe_2$		13			$+43.2 \pm 1.7$			$[OH^-] = 25 \text{ mM}, \mu = 34 \text{ mM}$
	$Co(NH_2Me)_5Cl^{2+} + OH^- \rightarrow Co(NH_2Me)_5OH^+ + Cl^-$		9.5			$+32.8\pm1.7$			$[OH^-] = 10 \text{ mM}, \mu = 13 \text{ mM}$
	$Co(NH_2Et)_5Cl^{2+} + OH^- \rightarrow Co(NH_2Et)_5OH^+ + Cl^-$ cis- $Co(en)_2(NH_3)Cl^{2+} + OH^- \rightarrow$		12 25			$+31.1 \pm 0.5 +31.8 \pm 0.6$			$[OH^-] = 1 \text{ mM}, \mu = 3 \text{ mM}$ $[OH^-] = 50 \text{ mM}, \mu = 56 \text{ mM}$
000	78% cis-, 22% trans-Co(en) ₂ (NH ₃)OH ²⁺ + Cl ⁻		20			101.0 ± 0.0			[011] 00 ππνι, μ 00 ππν
359	cis -Co(en) ₂ (NH ₃)Br ²⁺ + OH ⁻ \rightarrow		25			$+30.8 \pm 1.0$			$[OH^-] = 50 \text{ mM}, \mu = 56 \text{ mM}$
360	77% cis-, 23% trans-Co(en) ₂ (NH ₃)OH ²⁺ + Br ⁻ trans-Co(en) ₂ Cl ₂ ⁺ + OH ⁻ \rightarrow		14.5			$+24.3 \pm 1.1$			$[OH^{-}] = 15 \text{ mM}, \mu = 16 \text{ mM}$
	5% cis-, 95% trans-Co(en) ₂ (Cl)OH ⁺ + Cl ⁻								
361	cis-Co(en) ₂ Cl ₂ ⁺ + OH ⁻ → 37% cis -, 63% $trans$ -Co(en) ₂ (Cl)OH ⁺ + Cl ⁻		14.5			$+27.9 \pm 0.7$			$[OH^-] = 50 \text{ mM}, \mu = 51 \text{ mM}$
362	trans-Co(en) ₂ (N ₃)Cl ⁺ + OH ⁻ \rightarrow		15			$+26.7\pm0.4$			$[OH^{-}] = 50 \text{ mM}, \mu = 50 \text{ mM}$
262	23% cis-, 77% trans-Co(en) ₂ (N ₃)OH ⁺ + Cl ⁻ cis 0 Co(trion)Cl ⁺ + OH ⁻ \rightarrow cis Co(trion)(Cl)OH ⁺ + Cl ⁻		4			1957 19			[OH-] = 0.005 mM
	cis-β-Co(trien)Cl ₂ ⁺ + OH ⁻ → cis -Co(trien)(Cl)OH ⁺ + Cl ⁻		4			$+35.7 \pm 1.2$			$[OH^{-}] = 0.005 \text{ mM},$ $\mu = 100 \text{ mM}$
364	trans-Co(RSSR-cyclam)Cl ₂ ⁺ + OH ⁻ → trans-Co(RSSR-cyclam)(Cl)OH ⁺ + Cl ⁻		9.5			$+18.7 \pm 1.5$			$[OH^{-}] = 1 \text{ mM}, \mu = 1 \text{ mM}$
365	cis -Co(en) ₂ (NO ₂)Cl ⁺ + OH ⁻ $\rightarrow cis$ -Co(en) ₂ (NO ₂)OH ⁺ + Cl ⁻		24			$+20.8 \pm 0.3$			$[OH^{-}] = 50 \text{ mM}, \mu = 50 \text{ mM}$
	cis -Co(tet)Cl ₂ ⁺ + OH ⁻ $\rightarrow cis$ -Co(tet)(Cl)OH ⁺ + Cl ⁻		12			$+23.1 \pm 0.8$			$[OH^{-}] = 1 \text{ mM}, \mu = 3 \text{ mM}$
	cis-Co(tet)(Cl)OH ⁺ + OH ⁻ → cis -Co(tet)(OH) ₂ ⁺ + Cl ⁻ trans-RS-Co(tet)(Cl) ₂ ⁺ + OH ⁻ →		12 12			$+25.9 \pm 2.1 +22.1 \pm 0.7$			$[OH^{-}] = 1 \text{ mM}, \mu = 3 \text{ mM}$ $[OH^{-}] = 1 \text{ mM}, \mu = 3 \text{ mM}$
369	$trans$ -RS-Co(tet)(Cl)OH $^+$ + Cl $^-$		5			$+20.4\pm0.7$			$[OH^{-}] = 2 \text{ mM}, \mu = 6 \text{ mM}$
370	trans-RR(SS)-Co(tet)Cl ₂ ⁺ + OH ⁻ → trans-RS-Co(tet)(Cl)OH ⁺ + Cl ⁻		6			$+24.4 \pm 1.2$			$[OH^{-}] = 2 \text{ mM}, \mu = 6 \text{ mM}$
371	trans-RS-Co(tet)(Cl)OH ⁺ + OH ⁻ \rightarrow		12			$+23.8 \pm 0.9$			$[OH^{-}] = 1 \text{ mM}, \mu = 3 \text{ mM}$
	trans-RS-Co(tet)(OH) $_2^+$ + Cl $^-$			4 7 0				40.5	
	$C_0(NH_3)_5(OSO_2CF_3)^{2+} + CH_3CN \rightarrow C_0(NH_3)_5(CH_3CN)^{3+} + CF_3OSO_2^{-}$			150	4			125	μ not adjusted
372	20(1113)3(2113211) 1213222	CH_3CN	25			-3.1 ± 0.1			
373	$trans$ -Co(N-eten) ₂ Cl ₂ ⁺ + H ₂ O \rightarrow	MeOH H ₂ O/	17 25	150	4	-3.2 ± 0.1		164	[HCl] = 0.01 M,
	trans-co(iv-eten) ₂ Ci ₂ + 11 ₂ O	Bu ^t OH	23	130	4			104	$\mu = 0.5 \text{ M (NaCl)}$
374	trans-Co(N-eten) ₂ Cl(H ₂ O) ⁺ + Cl ⁻	wt % ROH 0				+5.83			
375		5				+5.61			
376		10				+5.61			
377 378		20 30				$+5.00 \\ +3.95$			
379		40				+2.55			
380	s - cis - $Co(eee)X_2^+ + H_2O \rightarrow X^- + s$ - cis - $Co(eee)(H_2O)X^{2+}$ $X = Cl^-$	H_2O	40	150	4	-4.6		165	$[HClO_4] = 0.1 M$
371	X = CI $X = Br^-$					-4.0 -4.2			
	$C_0(NH_3)_5(RCOO)^{2+} + H_2O \rightarrow C_0(NH_3)_5(H_2O)^{3+} + RCOO^{-}$	H_2O		200	5			166	$[HClO_4] = 0.4 M$
	$k_{\text{obs}} = k_{\text{o}} + k_{\text{I}}[H^{+}]$ $R = H$		64.5						
382	$k_{ m o}$					+0.9			
383	$egin{aligned} k_1 \ \mathbf{R} &= \mathbf{C}\mathbf{H}_3 \end{aligned}$		64.5			-5.8 ± 0.3	-3.6 (b)		
384	$k - Cn_3$ k_0		04.0			+0.7			
385	k_1		04.5			-4.2 ± 0.3	-4.7 (b)		
386	$R = C_2 H_5 \ k_o$		64.5			+0.5			
387	k_1		_			-4.4 ± 0.4	-5.9 (b)		
	$R = CH_2Cl$		74.5			+0.4			
388	k					10.7			
388 389	$k_{ m o} \ k_1$					-4.5 ± 0.4	-6.9 (b)		

Table 1. (Continued)

no.	reaction	solvent	T, °C		no. of data	${\Delta V^{\sharp}, \atop { m cm}^3 { m mol}^{-1}}$	$\Delta \bar{V}$, cm ³ mol ⁻¹ (method)	ref(s)	remarks
390	Ligand Su $k_{\scriptscriptstyle 0}$	bstitution 1	Reac	tions	(Conti	inued) −1.5			
391	k_1		70.5			-6.4 ± 0.3	-4.4 (b)		
392	$egin{aligned} ext{R} &= ext{CHCl}_2 \ k_{ ext{o}} \end{aligned}$		79.5			-7.0 ± 0.3	-18.5 (b)		$[HClO_4] = 0.01 M,$
393	$R = CHBr_2$ k_0		79.5			-6.4 ± 0.2	-16.3 (b)		$[NaClO_4] = 0.39 M$ $[HClO_4] = 0.01 M$,
394	$R = CCl_3$		74.5						$[NaClO_4] = 0.39 M$
395	$egin{aligned} k_{ m o} \ m R = CF_3 \end{aligned}$		74.5			-5.7 ± 0.4 -5.7 ± 0.3			$[HClO_4] = 0.01 M,$
396	$C_0(TMPP)(H_2O)_2^{5+} + TU \rightleftharpoons C_0(TMPP)(H_2O)(TU)^{5+} + H_2O$	H_2O	22	140	5	$+12.6 \pm 0.6$		167	$[H^+] = 0.1 \text{ M}, \mu = 1.0 \text{ M}$ (NaClO ₄)
	$C_0(NH_3)_5Cl^{2+} + OH^- \rightarrow C_0(NH_3)_5OH^{2+} + Cl^-$ $C_0(tacn)(en)Cl^{2+} + OH^- \rightarrow C_0(tacn)(en)OH^{2+} + Cl^-$	H_2O H_2O	64 64	150 150	8	$-5.1 \pm 0.2 \\ -3.6 \pm 0.2$		168 168	$pH = 1 (HClO_4)$ $pH = 1 (HClO_4)$
	$Co(tacn)(tn)Cl^{2+} + OH^{-} \rightarrow Co(tacn)(tn)OH^{2+} + Cl^{-}$	H_2O	64	150	8	-3.0 ± 0.2 -4.5 ± 0.8		168	pH = 1 (HClO4) $pH = 1 (HClO4)$
	$trans$ -CoCl ₂ (RSSR-cyclam) ⁺ + OH ⁻ \rightarrow $trans$ -Co(OH)(RSSR-cyclam)(Cl) ⁺ + Cl ⁻	H_2O		200				169	
400	· · · · · · · · · · · · · · · · · · ·		10			$+17.5 \pm 0.3$			
401 402			15 20			$+19.7 \pm 0.4 +18.3 \pm 0.6$			
403 404			25 30			$+17.2 \pm 0.5 \\ +17.1 \pm 0.6$			
404			35			$+17.1 \pm 0.0$ $+15.9 \pm 0.7$			
406 407	$trans(O)$ -Co(taud)Cl + H ₂ O $\rightarrow trans(O)$ -Co(taud)H ₂ O ⁺ + Cl ⁻	H ₀ O	40 25	160	5	$+15.6 \pm 0.8$ -3.2 ± 0.2		170	$\mu = 1.0 \text{ M (NaClO}_4),$
	$trans(O)$ -Co(taud)Br + H ₂ O $\rightarrow trans(O)$ -Co(taud)H ₂ O ⁺ + Br ⁻								pH = 1
		-	25	160	5	-2.3 ± 0.1		170	$\mu = 1.0 \text{ M (NaClO4)},$ pH = 1
	$trans(O)$ -Co(taud)Cl + OH ⁻ $\rightarrow trans(O)$ -Co(taud)OH + Cl ⁻	H_2O	25	160		$+19.1 \pm 0.3$		170	$\mu = 1.0 \text{ M (NaClO}_4),$ pH = 9
410	$trans(O)$ -Co(taud)Br + OH ⁻ $\rightarrow trans(O)$ -Co(taud)OH + Br ⁻	H_2O	25	160	5	$+19.7 \pm 0.4$		170	$\mu = 1.0 \text{ M (NaClO4)},$ pH = 9
	$Ni(H_2O)_6^{2+} + Cl$ -phen $\rightarrow Ni(Cl$ -phen) $(H_2O)_4^{2+} + 2H_2O$ $Ni(Cl$ -phen) $(H_2O)_4^{2+} + 2H_2O \rightarrow Ni(H_2O)_6^{2+} + Cl$ -phen	H ₂ O H ₂ O	25 25	150 150	7 7	$+6.0 \pm 0.1 \\ +2.1 \pm 0.2$	$+3.9 \pm 0.6$ (a)	154 154	
413	$Ni(H_2O)_6^{2+} + OAc^- \rightleftharpoons Ni(H_2O)_5(OAc)^+ + H_2O$	H_2O	25	160	9	12.1 ± 0.2	$+8.0\pm1.5$ (b)	171	$\mu = 0.10 \text{ M (NaClO}_4)$
	$Ni(H_2O)_6^{2+} + gly^- \rightleftharpoons Ni(H_2O)_4(gly)^+ + 2H_2O$ $Ni(H_2O)_4(gly)^+ + gly^- \rightleftharpoons Ni(H_2O)_2(gly)_2 + 2H_2O$	H_2O H_2O	25 25	160 160	9		$+11.2 \pm 0.2$ (b) $+12.0 \pm 0.5$ (b)		$\mu = 0.10 \text{ M (NaClO}_4)$ $\mu = 0.10 \text{ M (NaClO}_4)$
	$Ni(H_2O)_4(giy) + giy + Mi(H_2O)_2(giy)_2 + 2H_2O$ $Ni(H_2O)_6^{2+} + sar^- \rightleftharpoons Ni(H_2O)_4(sar)^+ + 2H_2O$	H_2O	25	160	9		$+11.7 \pm 0.5$ (b)		$\mu = 0.10 \text{ M (NaClO4)}$ $\mu = 0.10 \text{ M (NaClO4)}$
	$Ni(H_2O)_4(sar)^+ + sar^- \rightleftharpoons Ni(H_2O)_2(sar)_2 + 2H_2O$ $Ni(H_2O)_6^{2+} + en \rightleftharpoons Ni(H_2O)_4(en)^{2+} + 2H_2O$	H_2O H_2O	25 25	160 160	9		$+9.9 \pm 0.8$ (b) $+5.2 \pm 0.5$ (b)		$\mu = 0.10 \text{ M (NaClO}_4)$ $\mu = 0.10 \text{ M (NaClO}_4)$
419	$Ni(H_2O)_4(en)^{2+} + en \rightleftharpoons Ni(H_2O)_2(en)_2^{2+} + 2H_2O$	H_2O	25	160	9		$+5.6\pm0.9$ (b)	171	$\mu = 0.10 \text{ M (NaClO}_4)$
	$Ni(H_2O)_6^{2+} + edda^{2-} \rightleftharpoons Ni(H_2O)_2(edda) + 4H_2O$ $Ni(H_2O)_6^{2+} + NH_3 \rightleftharpoons Ni(H_2O)_5(NH_3)^{2+} + H_2O$	H_2O H_2O	25 25	160	9		$+28.6 \pm 0.2$ (b) -0.1 ± 0.5 (b)		$\mu = 0.10 \text{ M (NaClO}_4)$ $\mu = 1.0 \text{ M (NaClO}_4)$
	$Ni(CH_3OH)_6^{2+} + isoq \rightleftharpoons Ni(CH_3OH)_5(isoq) + CH_3OH$	CH ₃ OH	25				$+3.2 \pm 0.1$ (b)		$\mu = 1.0 \text{ M} \text{ (NaClO4)}$ $\mu = 1.0 \text{ M} \text{ (NaClO4)}$
	$Ni(C_2H_5OH)_6^{2+} + isoq \Rightarrow Ni(C_2H_5OH)_5(isoq)^{2+} + C_2H_5OH$ $Cu(tren)H_2O^{2+} + 4\text{-}Clpy \rightarrow Cu(tren)4\text{-}Clpy^{2+} + H_2O$	C_2H_5OH H_2O	25 25	200	6	-10.0 ± 2.0	$+1.1 \pm 0.1$ (b) -5.3 (a)	136 80	$\mu = 1.0 \text{ M (NaClO}_4)$ $\mu = 1.0 \text{ M (NaClO}_4)$
	Cu(tren) $H_2O^{2+} + py \rightarrow Cu(tren)py^{2+} + H_2O$	H ₂ O	25	200	6	-7.1 ± 1.0	+1.6 (a)	80	$\mu = 1.0 \text{ M} \text{ (NaClO4)}$ $\mu = 1.0 \text{ M} \text{ (NaClO4)}$
	Cu(tren) $H_2O^{2+} + 4$ -Mepy \rightarrow Cu(tren) $(4$ -Mepy) $^{2+} + H_2O$ Cu(tren) $(4$ -Clpy) $^{2+} + H_2O \rightarrow$ Cu(tren) $H_2O^{2+} + 4$ -Clpy	H ₂ O H ₂ O	25 25	200 200	8 6	-8.7 ± 1.1 -4.7 ± 1.0	-1.2 (a)	80 80	$\mu = 1.0 \text{ M (NaClO}_4)$ $\mu = 1.0 \text{ M (NaClO}_4)$
428	$Cu(tren)py^{2+} + H_2O \rightarrow Cu(tren)H_2O^{2+} + py$	H ₂ O	25	200	6	-4.7 ± 1.0 -8.7 ± 1.0		80	$\mu = 1.0 \text{ M} \text{ (NaClO4)}$ $\mu = 1.0 \text{ M} \text{ (NaClO4)}$
429	Cu(tren)(4-Mepy) ²⁺ +H ₂ O \rightarrow Cu(tren)H ₂ O ²⁺ +4-Mepy Cu(H ₂ O) ₆ ²⁺ + Cl-phen \rightarrow Cu(H ₂ O) ₄ (Cl-phen) ²⁺ + 2H ₂ O	H ₂ O H ₂ O	25 25	200 200	8 4	-7.5 ± 1.2	$+1.9 \pm 0.4$ (a)	80	$\mu = 1.0 \text{ M (NaClO}_4)$ $\mu = 0.05 \text{ M (NaClO}_4),$
							$\pm 1.3 \pm 0.4 (a)$		5.7 < pH < 5.9
431	$Cu(H_2O)_4(Cl\text{-phen})^{2+} + 2H_2O \rightarrow Cu(H_2O)_6^{2+} + Cl\text{-phen}$	H_2O	25	200	4	+5.2		172	$\mu = 0.05 \text{ M (NaClO}_4),$ 5.7 < pH < 5.9
432	$\begin{array}{l} Cu(H_2O)_6{}^{2+} + phen \rightarrow Cu(H_2O)_4(phen)^{2+} + 2H_2O \\ Cu(H_2O)_4(phen)^{2+} + phen \rightarrow Cu(H_2O)_2(phen)_2{}^{2+} + 2H_2O \end{array}$	H ₂ O	25				+10.0 (b)	173	1
	$\operatorname{Cu}(\operatorname{H}_2\operatorname{O})_4(\operatorname{pinen})^{2^+} + \operatorname{pinen} \rightarrow \operatorname{Cu}(\operatorname{H}_2\operatorname{O})_2(\operatorname{pinen})_2^{2^+} + 2\operatorname{H}_2\operatorname{O}$ $\operatorname{Cu}(\operatorname{H}_2\operatorname{O})_2(\operatorname{phen})_2^{2^+} + \operatorname{phen} \rightarrow \operatorname{Cu}(\operatorname{phen})_3^{2^+} + 2\operatorname{H}_2\operatorname{O}$	H_2O H_2O	25 25				+8.8 (b) +1.6 (b)	173 173	
	$Zn(H_2O)_6^{2+} + bpy \rightarrow Zn(H_2O)_4(bpy)^{2+} + 2H_2O$	H ₂ O	25				+11.9 (b)	173	
	$Zn(H_2O)_4(bpy)^{2+} + bpy \rightarrow Zn(H_2O)_2(bpy)_2^{2+} + 2H_2O$ $Zn(H_2O)_2(bpy)_2^{2+} + bpy \rightarrow Zn(bpy)_3^{2+} + 2H_2O$	H ₂ O H ₂ O	25 25				+1.1 (b) +1.6 (b)	173 173	
	$Zn(H_2O)_6^{2+} + phen \rightarrow Zn(H_2O)_4(phen)^{2+} + 2H_2O$	H ₂ O	25				+19.4 (b)	173	
439	$Zn(H_2O)_4(phen)^{2+} + phen \rightarrow Zn(H_2O)_2(phen)_2^{2+} + 2H_2O$ $Zn(H_2O)_2(phen)_2^{2+} + phen \rightarrow Zn(phen)_3^{2+} + 2H_2O$	H_2O H_2O	25 25				+6.0 (b) -1.7 (b)	173 173	
	$Zn(H_2O)_6^{2+} + Cl$ -phen $\rightarrow Zn(H_2O)_4(Cl$ -phen) ²⁺ + $2H_2O$	H_2O	25	200	4	$+5.0\pm0.4$	+0.9 (c)	172	$\mu = 0.05 \text{ M (NaClO4)},$ 5.7 < pH < 5.9
442	$Zn(H_2O)_4(Cl\text{-phen})^{2+} + 2H_2O \rightarrow Zn(H_2O)_6{}^{2+} + Cl\text{-phen}$	H_2O	25	200	4	$+4.1\pm0.4$		172	$\mu = 0.05 \text{ M (NaClO4)},$ 5.7 < pH < 5.9
	$Zn(H_2O)_6^{2+} + bpy \rightleftharpoons Zn(H_2O)_4(bpy)^{2+} + 2H_2O$	H ₂ O	0	200	6-9	$+7.1 \pm 0.4$	$+3.5\pm0.4$ (a)		$\mu = 0.01 \text{ M (NaClO4)}$
	$Mo(CO)_5(4-CNpy) + bpy \rightarrow Mo(CO)_4bpy + CO + 4-CNpy$ $Mo(H_2O)_6^{3+} + NCS^- \rightleftharpoons$	C ₆ H ₅ CH ₃ triflic acid	25 12	100 140	4 8	$^{+3}$ $^{-11.4} \pm 0.5$		175 176	$[H^+] = 1.0 \text{ M}, \mu = 1.0 \text{ M}$
	$Mo(H_2O)_5(NCS)^{2+} + H_2O$								(lithium triflate)
446	$Mo(DTH)(CO)_4 + 2 L \rightarrow Mo(CO)_4L_2 + DTH$ $L = P(OMe)_3$	DCE	40.0	100	5	-11.3 ± 0.5		124	
447 448	$L = P(OPr^{i})_{3}$		50.0 40.0			$\begin{array}{c} -10.2 \pm 0.8 \\ -9.3 \pm 0.4 \end{array}$			
	$L = P(OPh)_3$ $Mo(dto)(CO)_4 + 2 P(OPr^i)_3 \rightarrow Mo(CO)_4(P(OPr^i)_3)_2 + dto$	DCE	46.0	150	4	-9.4 ± 0.2		124	
450	$Mo(BTE)(CO)_4 + 2 P(OPr^i)_3 \rightarrow Mo(CO)_4(P(OPr^i)_3)_2 + BTE$ Ru(medtra)(H_2O/OH^-) + $SC(NH_2)_2 \rightarrow$	DCE H ₂ O	56 25	150 100	4 5	$+3.9\pm0.3$		124 177	$\mu = 0.2 \text{ M (Na}_2 \text{SO}_4)$
451	Ru(medtra) $SC(NH_2)_2 + H_2O/OH^-$		~0	100	3	01 07			
451 452						-6.1 ± 0.7 -8.9 ± 1.1			pH = 2.5 pH = 8

Table 1. (Continued)

Section Part	no.	reaction	solvent		P, MPa		ΔV^{\dagger} , cm ³ mol ⁻¹	ΔV , cm 3 mol $^{-1}$ (method)	ref(s)	remarks
Respondential (LOCH)** LOCK)** LOCH)** LOCK	159	Ligar	ıd Substitutio	ı Re	actio	ns (C				nII = 0
15 15 15 15 15 15 15 15	133		H_2O	25	100	5	-9.7 ± 1.2		177	$\mu = 0.2 \text{ M (Na}_2 \text{SO}_4)$
H = 8 S S S S S S S S S	154	Ru(medtra)SCN ⁻ + H ₂ O/OH ⁻					-7.7 ± 0.5			nH = 2.5
### ### ### ### ### ### ### ### ### ##										
Figure F	56									
55 L - Imidiazole			H_2O	25	100				178	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	57						+4.2 + 0.2			pH = 8.6
								-5.6 ± 0.8 (b)		*
1	59						$+2.0\pm0.3$			pH = 5.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	en		H_2O	25	100	6	0.0 0.0		179	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$L = N_3^-$								*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		I - SCN-								*
L = SCN	03		H ₂ O	25	100	5	-9.0 ± 0.3		180	*
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	66		2 -				-7.3 ± 0.6			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										*
To C No No No No No No No										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathbf{L} = (11112)2\mathbf{CS}$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$L = (NHMe)_2CS$								
74 Ru ₃ (CO) ₁₁ (CO ₂ CH ₃) ² + P(OMe) ₃ + CO										pH = 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		- · · ·								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	74			23	100	4	$\pm 10 \pm 2$		101	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	75			25	100	5	$+24.5\pm2.0$		181	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		** *** * ***								
$ 77 \ trans-Rh(tacpa)CF^{1+} \circ H^{-1} - products \\ Rh^{10}(NH_3)H_0O^{1} + CO_3^{2-} - Rh^{10}(NH_3)_3(H_2O) + CO_3^{2-} \\ Rh^{10}(NH_3)H_0O^{1} + CO_3^{2-} - Rh^{10}(NH_3)_3(H_2O) + CO_3^{2-} \\ Rh^{10}(NH_3)GO_2O_2 + H_3O^{-1} - Rh^{10}(NH_3)_3(H_2O) + CO_3^{2-} \\ Rh^{10}(NH_3)GO_2O_3 + H_3O^{-1} - Rh^{10}(NH_3)_3(H_2O) + CO_3^{2-} \\ Rh^{10}(NH_3)GO_2O_3 + H_3O^{-1} - Rh^{10}(NH_3)_3 + Ro^{3+} + Me_3O^{-1} \\ Rh^{10}(NH_3)GO_2O_3 + H_3O^{-1} + Rh^{10} - Rh^{10}(NH_3)_3 + Ro^{3+} + Me_3O^{-1} \\ Rh^{10}(NH_3)_3 + Ro^{3} + Rh^{10} - Rh^{10}(NH_3)_3 + Ro^{3+} + Me_3O^{-1} \\ Rh^{10}(NH_3)_3 + Ro^{3+} + H_3O^{-1} + Rh^{10}(Nh_3)_3 + Rh^{1$	76			25	100	5	$+2.5 \pm 2.5$		181	
78 Rh ^{In} (NH ₃) ₂ (H ₂ O) + CO ₃ ² — Rh ^{In} (NH ₃) ₂ (OCO ₂) + H ₂ O + H ₂ O + H ₂ O + S + S + S + S + Rh(NH ₃) ₃ (S) ² + H ₂ O + Rh ^{In} (NH ₃) ₄ (DCO ₂) + H ₂ O + Rh ^{In} (NH ₃) ₄ (DCO ₂) + H ₂ O + Rh(NH ₃) ₄ (S) ² + Rh(NH ₃) ₄ (S	77	$RU(CO)_{10}(CO_2CH_3)P(OMe)_3 + CO$ $trans$ -Rh(tacna) $Cl^{2+} + OH^- \rightarrow products$		25	140		+195+12		117	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$						4				$\mu = 1.0 \text{ M}, \text{ pH} = 1$
CF ₃ SSO ₂	79		H_2O	50			-2.4 ± 0.5			$\mu = 1.0 \text{ M}, \text{ pH} = 1$
80					150	4			125	S = solvent
See No.	80	CF30302	CH ₃ CN	35			-7.8 ± 0.5			
120b			-							
Rh(NH ₃) ₃ H ₂ O ³⁺ + H ₂ O										
Ball Rh(MeNHs); MeSO H ₂ O 25	83		H_2O	25			-2.9 ± 0.3		120b	
188 Rh(MeNHa)3H20NMe2** + H4O \ Rh(MeNHa)3H20** + H2O \ Rh(MeNHa)3H20** + H2O \ Rh(MeNHa)3H20** + H2O \ Rh(MeNHa)3H20** + H2O \ Rh(MenNHa)3H20** + H2O \ Rh(MenNHa)3H20** + H2O \ Rh(MenNHa)3H20** + H2O \ Rh(MenNHa)3H20** + H2O \ Rh(Menn)3(CH3)H2O + Pro \ H2O \ Rh(Menn)3(Rh(Ha)3(CH3)H2O + Pro \ H2O \ Rh(Menn)3(Rh(Ha	84		H_2O	25			$+1.5\pm0.6$		120b	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			*** 0						4001	
186 trans-Rh(Hdmg) ₂ (CH ₃)H ₂ O + I $^-$ H ₂ O 9 150 4 +2.1 ± 0.4 183 μ = 1.0 M (NaClC trans-Rh(Hdmg) ₂ (CH ₃)H ₂ O + pV $^-$ H ₂ O 20 150 4 +7.16 ± 0.01 183 μ = 1.0 M (NaClC trans-Rh(Hdmg) ₂ (CH ₃)H ₂ O + TMTU $^-$ H ₂ O 20 150 4 +4.30 ± 0.04 183 μ = 1.0 M (NaClC trans-Rh(Hdmg) ₂ (CH ₃)H ₂ O + TMTU $^-$ H ₂ O 20 150 4 +4.30 ± 0.04 183 μ = 1.0 M (NaClC trans-Rh(Hdmg) ₂ (CH ₃)H ₂ O + TMTU $^-$ H ₂ O 20 150 4 +6.3 ± 0.3 183 μ = 1.0 M (NaClC trans-Rh(Hdmg) ₂ (CH ₃)H ₂ O + I $^-$ H ₂ O 9 150 4 +6.3 ± 0.3 183 μ = 1.0 M (NaClC trans-Rh(Hdmg) ₂ (CH ₃)H ₂ O + I $^-$ H ₂ O 9 150 5 -6.9 ± 0.2 176	85		H_2O	25			$\pm 1.7 \pm 0.4$		120b	
	186		H_2O	9	150	4	$+2.1\pm0.4$		183	$\mu = 1.0 \text{ M} \text{ (NaClO}$
	187		H ₂ O	20	150	4	$+7.16 \pm 0.01$		183	$\mu = 1.0 \text{ M} \text{ (NaClO)}$
	188		H ₂ O	20	150	4	$+4.30 \pm 0.04$		183	$u = 1.0 \text{ M} \text{ (NaClO}_{2}$
		trans-Rh(Hdmg) ₂ (CH ₃)TMTU + H ₂ O	2 -							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	89		H_2O	9	150	4	$+6.3\pm0.3$		183	$\mu = 1.0 \text{ M} \text{ (NaClO)}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	on		МоОЦ	25	100	5	_6 0 ± 0 2		176	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$Rh(TPPS)(H_2O)_2^{3-} + TU \rightarrow$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$Rh(TPPS)(H_2O)(TU)^{3-} + H_2O$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	193	$(\eta^5-C_5H_5)Rh(CO)_2 + PPh_3 \rightarrow products$	C ₆ H ₅ CH ₃	40	150	4	-14.4 ± 1.5		184	(IvalvO ₃)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			CH ₃ Cl	30					185	
$\begin{array}{llllllllllllllllllllllllllllllllllll$										
98 $Pd(H_2O)_4^{2+} + Me_2S \rightarrow PdMe_2S(H_2O)_3^{2+} + H_2O$ H_2O 25 200 9 -4.0 ± 0.2 186 $\mu = 1.0$ M (HClO ₄ 99 $Pd(H_2O)_4^{2+} + Et_2S \rightarrow PdEt_2S(H_2O)_3^{2+} + H_2O$ H_2O 25 200 9 -8.7 ± 0.1 186 $\mu = 1.0$ M (HClO ₄ 00 $Pd(H_2O)_4^{2+} + S(CH_2)_4O \rightarrow Pd$ $S(CH_2)_4O(H_2O)_3^{2+} + H_2O$ H_2O 25 200 9 -6.6 ± 0.2 186 $\mu = 1.0$ M (HClO ₄ 01 $Pd(H_2O)_4^{2+} + S(CH_2)_4S \rightarrow Pd$ $S(CH_2)_4S(H_2O)_3^{2+} + H_2O$ H_2O 25 200 9 -10.1 ± 0.3 186 $\mu = 1.0$ M (HClO ₄ $Pd(H_2O)_4^{2+} + L \rightarrow Pd(H_2O)_3L^{2+} + H_2O$ H_2O 25 200 9 -10.1 ± 0.3 187 $Pd(H_2O)_4^{2+} + L \rightarrow Pd(H_2O)_3L^{2+} + H_2O$ H_2O 25 200 9 -7.6 ± 0.3 187 $Pd(H_2O)_4^{2+} + L \rightarrow Pd(H_2O)_3L^{2+} + H_2O$ H_2O 25 200 9 -7.6 ± 0.3 187 $Pd(H_2O)_4^{2+} + L \rightarrow Pd(H_2O)_3L^{2+} + H_2O$ H_2O 25 200 9 -7.6 ± 0.3 187 $Pd(H_2O)_4^{2+} + L \rightarrow Pd(H_2O)_4^{2+} + L \rightarrow Pd(H_2O)$										
$\begin{array}{llllllllllllllllllllllllllllllllllll$			H_2O	25	200	9			186	$\mu = 1.0 \text{ M (HClO}_4)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										$\mu = 1.0 \text{ M} (HClO_4)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	υı					J	10.1 ± 0.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02		-2-				-7.6 ± 0.3		-01	41
$\begin{array}{llllllllllllllllllllllllllllllllllll$	03	$L = EtSCH_2COOH$					-7.9 ± 0.5			
$\begin{array}{llllllllllllllllllllllllllllllllllll$		·	-	0.5	100			1 + 9 (-)	100	0 - 14 - 11
$\begin{array}{llllllllllllllllllllllllllllllllllll$							-15 ± 3			
$\begin{array}{llllllllllllllllllllllllllllllllllll$							-1 ± 4	υ <u>μ</u> ω (α)		$\mu = 0.5 \text{ M}, \text{ pH} = 4$ $\mu = 0.5 \text{ M}, \text{ pH} = 4$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$Pd(met)(Ino)(H_2O)^{2+} + Cl^- \rightarrow Pd(met)(Cl)Ino^+ + H_2O$	H_2O	25	130	6				$\mu = 0.5 \text{ M}, \text{ pH} = 4$
$R = H$, $Nu = adenosine$ -6.74 ± 0.01 $pH = 2.9$			H_2O	25	100	5	0.0: ~			-
										*
	110	R = H, $Nu = adenosineR = H$, $Nu = inosine$					-6.74 ± 0.01 -9.7 ± 1.5			p11 – 2.9

Table 1. (Continued)

no.	reaction	solvent	<i>T</i> , °C		no. of data	$^{\Delta}V^{\!*}$, cm $^{\!3}\mathrm{mol}^{-1}$	ΔV , cm ³ mol ⁻¹ (method)	ref(s)	remarks
		gand Subs	titut	ion R	eactio	ns (Continu	ed)		
512 513	R = Et, $Nu = adenosineR = Et$, $Nu = inosine$					-10.6 ± 0.8 -6.1 ± 0.1			
	$Pd(Et_4en)(H_2O)(adenosine)^{2+} + H_2O \rightarrow$	H_2O	25	100	5	-6.3 ± 2.5		189	
515	$Pd(Et_4en)(H_2O)_2^{2+} + adenosine$ $Pd(Et_4en)(H_2O)_2^{2+} + inosine \rightarrow$	H_2O	25	100	5	-4.3 ± 0.6		189	
	$Pd(Et_4en)(H_2O)(inosine)^{2+} + H_2O$								
	$Pd(H_2O)_4^{2+} + MeCN \rightleftharpoons Pd(H_2O)_3(MeCN)^{2+} + H_2O$ $Pd(H_2O)_3(MeCN)^{2+} + H_2O \rightleftharpoons Pd(H_2O)_4^{2+} + MeCN$	H_2O H_2O	5 5	200 200	$\begin{array}{c} 4-7 \\ 4-7 \end{array}$	-4.0 ± 0.8 -1.5 ± 0.5	-2.5 ± 0.4 (a)	189 190	1.00 M HClO ₄ 1.00 M HClO ₄
517	$Pd(R_5dien)H_2O^{2+} + L \rightarrow Pd(R_5dien)L^{2+} + H_2O$	H ₂ O	3	100	· ·	1.0 ± 0.0		93	pH < 5, $\mu = 0.1 \text{ M (NaClO}_4)$
	R = Me	_			_				
518 519	L = SC(NH2)2 $L = SC(NHMe)2$		15 25		5 5	-9.3 ± 0.4 -9.1 ± 0.6			
520	L = SC(NMe2)2 $L = SC(NMe2)2$		25			-13.4 ± 0.7			
	R = Et								
521 522	L = SC(NH2)2 L = SC(NHMe)2		15 25		6 6	-8.3 ± 0.3 -10.2 ± 0.6			
523	L = SC(NMe2)2 $L = SC(NMe2)2$		25		6	-10.2 ± 0.0 -12.7 ± 0.6			
	$Pd(H_2O)_4^{2+} + RCOOH \rightarrow Pd(H_2O)_3OOCR^+ + H^+$	H_2O	25	150	7			191	$\mu = 1.0 \text{ M (HClO}_4)$
524	$R = CH_3$					-8.1 ± 0.3			
525 526	$R = CH_3CH_2$ $R = HOCH_2$					-8.9 ± 0.8 -3.4 ± 0.2			
	$Pd(H_2O)_3OOCR^+ + H^+ \rightarrow Pd(H_2O)_4^{2+} + RCOOH$	H_2O	25	150	7			191	$\mu = 1.0 \text{ M (HClO}_4)$
527	$R = CH_3$					-1.7 ± 0.2			
528 529	$R = CH_3CH_2$ $R = HOCH_2$					-1.7 ± 0.2 -2.3 ± 0.2			
	$Pd(Et_4en)(H_2O)_2^{2+} + d(GpG) \rightarrow$	H_2O	25	140	4	-3.8 ± 0.2		192	$\mu = 0.1 \text{ M (HClO}_4)$
F 9 1	$Pd(Et_4en)(d(GpG))H_2\hat{O}^{2+} + H_2O$	шо	95	1.40	4	11 1 0		100	= 0.1 M (UCIO.)
331	$Pd(Et_4en)(d(GpG))H_2O^{2+} \rightarrow Pd(Et_4en)(d(GpG))^{2+} + H_2O$	H_2O	25	140	4	$+1\pm2$		192	$\mu = 0.1 \text{ M (HClO}_4)$
	$Pd(Me_5dien)py^{2+} + S \rightarrow Pd(Me_5dien)S^{2+} + py$							193	
532 533	(S = solvent)	H ₂ O MeOH	25 25	150 150	7 7	-3.1 ± 0.1 -6 ± 1			[OH] = 0.01 M
534		EtOH	25	100	5	-6 ± 1 -4.1			0.1 M ptsa 0.1 M ptsa
535		DMSO	30	80	5	0			0.1 M ptsa
536		DMF M-CN	30	100	5	-3.4 ± 0.3			0.1 M ptsa
537 538	$Pd(H_2O)_4^{2+} + DMSO \rightarrow Pd(H_2O)_3(DMSO)^{2+} + H_2O$	MeCN H_2O	30 25	100 180	5 9	-2.4 ± 0.6 -9.2 ± 0.6	-7.5 ± 0.3 (a)	194	0.1 M ptsa $\mu = 1.0$ M (HClO ₄)
	$Pd(dien)(OH_2)^{2+} + L \rightarrow Pd(dien)(L)^{2+} + H_2O$	H ₂ O	12	100	5		(4)	195	$\mu = 0.1 \text{ M (NaClO}_4)$
539	L = adenosine					-2.0 ± 0.4			pH = 5 (NaOH)
540 541	L = cytidine L = thymidine					$+1.5 \pm 0.7$ -0.6 ± 2.2			5 < pH < 7 5 < pH < 7
542	L = uridine					-0.8 ± 2.2			5 < pH < 7
	$Pd(Et_4dien)(OH_2)^{2+} + HSO_3^{-}/SO_3^{2-} \rightarrow$	H_2O	25	100	5			196	$\mu = 0.5 \text{ M}$
543	$Pd(Et_4dien)(SO_3) + H_2O$					-10.4 ± 0.5			pH = 3.3, [total sulfur] = 0.001 M
544						-12.4 ± 0.6			pH = 3.3, [total sulfur] = 0.01 M
545 546						-11.5 ± 0.4 -16.6 ± 0.9			pH = 5.2, [total sulfur] = 0.001 M pH = 5.2, [total sulfur] = 0.01 M
340	$Pd(R_5dien)X^{(2-n)+} + H_2O \rightarrow Pd(R_5dien)H_2O^{2+} + X^{n-}$	H_2O		100	5	10.0 ± 0.3		197	$[OH^{-}] = 0.01 \text{ M},$
	$D = M_{\star}$								$\mu = 0.1 \text{ M (NaClO}_4)$
547	$egin{aligned} \mathbf{R} &= \mathbf{M}\mathbf{e} \ \mathbf{X} &= \mathbf{B}\mathbf{r}^- \end{aligned}$		25			-11.4 ± 0.7	-4.1 ± 1.1 (c)		
548	$X = I^-$		25			-9.7 ± 0.3	$+0.2 \pm 1.5$ (c)		
549 550	$X = N_3^-$ $X = C_2O_4^{2-}$		25 25				-1.3 ± 1.0 (c) -4.5 ± 1.0 (c)		
330	R = Et		23			-10.4 ± 0.0	$-4.3 \pm 1.0 (c)$		
551	$X = Br^-$		34			-11.6 ± 0.5			
552 553	$egin{array}{l} \mathbf{X} = \mathbf{I}^- \ \mathbf{X} = \mathbf{N}_3^- \end{array}$		34 34			-6.8 ± 0.9	$+0.2 \pm 1.5$ (c) -0.3 ± 0.8 (c)		
554	$X = 1 V_3$ $X = C_2 O_4^{2-}$		25				-3.7 ± 1.0 (c)		
	$Cd(H_2O)_6^{2+} + bpy \rightarrow Cd(H_2O)_4(bpy)^{2+} + 2H_2O$	H_2O	0	200	6	-5.5 ± 1.0		166	$\mu = 0.01 \text{ M (NaClO}_4)$
	$La(H_2O)_n^{3+} + Hdcp^{2-} \rightarrow La(H_2O)_{n-3}(Hdcp)^{+} + 3H_2O$		25	200	8		$+12.1 \pm 1.5$ (a)		
	$La(H_2O)_{n-3}(Hdcp)^+ + 3H_2O \rightarrow La(H_2O)_n^{3+} + Hdcp^{2-}$ $Ce(H_2O)_9^{3+} \rightleftharpoons Ce(H_2O)_8^{3+} + H_2O$	H ₂ O	25 25	200 200	8 6	+7	$+10.9 \pm 0.3$ (a)	198 199	
559	$\text{Eu}(\text{edta})(\text{H}_2\text{O})_3 \rightleftharpoons \text{Eu}(\text{edta})(\text{H}_2\text{O})_2 + \text{H}_2\text{O}$	H_2O	87.5	200	4		$+13.2 \pm 0.2$ (a)		$pH = 6.5 \text{ (NaClO}_4)$
560	$\operatorname{Eu}(\operatorname{CyDTA})(\operatorname{H}_2\operatorname{O})_3 \rightleftharpoons \operatorname{Eu}(\operatorname{CyDTA})(\operatorname{H}_2\operatorname{O})_2 + \operatorname{H}_2\operatorname{O}$	H ₂ O	115	200	4		$+3.0 \pm 0.3$ (a)		$pH = 6.0 \text{ (NaClO}_4)$
	$\operatorname{Eu^{III}(ar)_2(H_2O)} + \operatorname{H^+} + \operatorname{dtpa} \rightarrow$ $\operatorname{Eu^{III}(ar)dtpa(H_2O)} + \operatorname{Har}$	H_2O	25	100	5			200	pH = 4.8
	fast step					-19.3 ± 0.4			
	slow step $Gd^{III}(ar)(H_2O)_x + dtpa^{5-} + H^+ \rightarrow$	H_2O	25	100	4	-1.0 ± 1.4 -24.0 ± 1.8		201	$\mu = 0.3 \text{ M}, \text{ pH} = 3.4$
505	$Gd^{III}(dtpa)(H_2O)^{2^-} + Har$	1120	20	100	-	24.0 ± 1.0		201	$\mu = 0.3$ M, pH = 0.4
564	C.III(-) (II O) + 14 - 5= + II+	11.0	0.5	100		-13.9 ± 0.8		001	$\mu = 0.3 \text{ M}, \text{ pH} = 5.7$
565	$Gd^{III}(ar)_2(H_2O) + dtpa^{5-} + H^+ \rightarrow Gd^{III}(dtpa)(H_2O)^{2-} + Har + ar$	H_2O	25	100	4	$+1.4 \pm 2.8$		201	$\mu = 0.3 \text{ M}, \text{ pH} = 3.4$
566	•	0.15				$+69.6 \pm 3.7$			μ = 0.3 M, pH = 5.7
567	cis -(C ₆ H ₅ Cl)(PPh ₃)W(CO) ₄ + pip \rightarrow cis-(pip)(PPh ₃)W(CO) ₄ + C ₆ H ₅ Cl	C_6H_5Cl	24.5	150	4	-11.3 ± 0.4		124	
568	cis -W(\hat{CO}) ₄ (4-Mepy) ₂ + phen \rightarrow	$C_6H_5CH_3$	25	70	2	+8		202	
500	cis-W(CO) ₄ (phen) + $2(4$ -Mepy)		95	900	a	_9 4 + 0 4		909	
209	$CH_3ReO_3 + OH^- \rightarrow CH_4 + ReO_4^-$ $PtMe_4(phen) + HA \rightarrow PtMe_3(A)(phen) + CH_4$	H_2O	25 25	200 150	2 4	-2.4 ± 0.4		203 204	
	· A · · · · · · · · · · · · · · · · · ·		-		-				

Table 1. (Continued)

570						cm ³ mol ⁻¹	(method)	ref(s)	remarks
		d Substitution H ₂ O	Re	actio	ns (Co	ntinued) −8.5 ± 0.5			
571		H ₂ O				-6.6 ± 1.0			
572	HA = benzoic acid	MeOH				-8.2 ± 0.3			
573		H ₂ O				-15.1 ± 1.6			
574		H_2O	25	150	4	-10.5 ± 0.5		204	
575	$PtMe_4(bpy) + HA \rightarrow PtMe_3(A)(bpy) + CH_4$ HA = formic acid		23	130	4	-12.2 ± 0.4		204	
576		H_2O				-11.6 ± 1.0			
	$Pt(H_2O)_4^{2+} + Me_2S \rightarrow PtMe_2S(H_2O)_3^{2+} + H_2O$	$H_2^{\circ}O$	25	200	8	-15.3 ± 0.4		186	$\mu = 0.01 \text{ M (HClO}_4)$
	$Pt(H_2O)_4^{2+} + Et_2S \rightarrow PtEt_2S(H_2O)_3^{2+} + H_2O$	H ₂ O	25	200	8	-17.0 ± 0.3		186	$\mu = 0.01 \text{ M (HClO}_4)$
	$Pt(H_2O)_4^{2+} + S(CH_2)_4O \rightarrow PtS(CH_2)_4O(H_2O)_3^{2+} + H_2O$	H ₂ O H ₂ O	25 25	200 200	8 8	-13.9 ± 0.3 -20.1 ± 0.2		186 186	$\mu = 0.01 \text{ M (HClO_4)}$
	$Pt(H_2O)_4^{2+} + S(CH_2)_4S \rightarrow PtS(CH_2)_4S(H_2O)_3^{2+} + H_2O$ $rac-Pt(R_1-en)Cl_2 + H_2O \rightarrow rac-Pt(R_1-en)(H_2O)Cl^+ + Cl^-$		38	200	5	-20.1 ± 0.2 -9.4 ± 0.7	-5.3 ± 1.1 (a)		$\mu = 0.01 \text{ M (HClO}_4)$
	rac -Pt(R ₁ -en)(H ₂ O)Cl ⁺ + Cl ⁻ $\rightarrow rac$ -Pt(R ₁ -en)Cl ₂ + H ₂ O		38	200	5	-4.0 ± 0.4	010 ± 111 (a)	205	
583	rac -Pt(R ₁ -en)(H ₂ O)Cl ⁺ + H ₂ O \rightarrow	H_2O	6	200	5	-6.6 ± 1.7	-2.2 ± 2.0 (a)	205	
FO.4	rac-Pt(R ₁ -en)(H ₂ O) ₂ ²⁺ + Cl ⁻	11.0	0	000	-	44105		005	
584	rac-Pt(R ₁ -en)(H ₂ O) ₂ ²⁺ + Cl ⁻ → rac -Pt(R ₁ -en)(H ₂ O)Cl ⁺ + H ₂ O	H_2O	6	200	5	-4.4 ± 0.5		205	
585	cis -Pt(NH ₃) ₂ (1-MeU)H ₂ O ⁺ + I ⁻ \rightarrow	H_2O	15	100	5	-7.7 ± 0.1		206	
	cis-Pt(NH ₃) ₂ (1-MeU)I + H ₂ O								
586	cis -Pt(NH ₃) ₂ (1-MeU) ₂ + I ⁻ \rightarrow cis-Pt(NH ₃) ₂ (1-MeU)I + 1-MeUH	H_2O	60	100	5	-5.6 ± 0.6		206	
587	$Pt(CN)_4ClOH^{2-} + HSO_3^- \rightleftharpoons (O_2SO)Pt(CN)_4Cl^{3-} + H_2O$	H_2O	25	150	9	-9.4 ± 0.4		207	$\mu = 1.0 \text{ M}, [H^+] = 0.03 \text{ M}$
	$Pt(N-C-N)H_2O^+ + tmtu \rightarrow Pt(N-C-N)tmtu^+ + H_2O$	H ₂ O		125	Ü	-12.0 ± 0.5			5-10% DMF
589	$Pt(N-C)(py-SO_3)H_2O + tmtu \rightarrow$	H_2O	25	150		-10.5 ± 0.1		208b	
500	$Pt(N-C)(py-SO_3)tmtu + H_2O$	но	10	150		10.1 + 0.6		208b	
390	$Pt(N-C)(py-SO_3)H_2O + N_3^- \rightarrow Pt(N-C)(py-SO_3)N_3^- + H_2O$	H_2O	10	150		-10.1 ± 0.6		LUOD	
591	$Pt(N-C)(py-SO_3)N_3^- + H_2O \rightarrow$	H_2O	10	150		-12.4 ± 0.9		208b	
	$Pt(N-C)(pySO_3)H_2O + N_3^-$	** 0		4 = 0	_				
592	$\operatorname{CrCl}(L)^{2+} + \operatorname{Hg}^{2+} \to \operatorname{Cr}(L)^{3+} + \operatorname{HgCl}^{+}$ $L = mer\text{-}(\operatorname{tn})(\operatorname{dpt})$	H_2O	25	150	5	102102		209	
593	· / · 1 /					$+0.3 \pm 0.3 \\ -0.5 \pm 0.1$			
594	/ 1 /					$+1.8 \pm 0.2$			
595						-5.0 ± 0.2			
596	· / · 1 /					-0.03 ± 0.07			
597	* * * * *					-5.7 ± 0.2			
598	1 /					-0.8 ± 0.6			
500		duced Therm						910	
	$Cr(CO)_5(en) \rightarrow Cr(CO)_4(en) + CO$ $Cr(CO)_5(R_2dab) \rightarrow Cr(CO)_4(R_2dab) + CO$	$C_6H_5CH_3$ $C_6H_5CH_3$		150 150	4	$-11.9 \pm 1.5 +17.2 \pm 1.0$		210 210	
	$(\eta^1\text{-phen})\text{Cr}(\text{CO})_5 \rightarrow (\eta^2\text{-phen})\text{Cr}(\text{CO})_4 + \text{CO}$	C_6H_5F		150	5	$+6.2 \pm 0.5$		211	
	$Cr(CO)_5(S) + L \rightarrow Cr(CO)_5L + S$	- 0 3		100	5			212	
602		S = n-heptane				$+6.2\pm0.2$			
603	1 1					$+1.4 \pm 0.4$			
604 605	1					-1.4 ± 0.3 -1.4 ± 0.5			
606	1 3	$S = C_6H_5F$				$-1.4 \pm 0.3 + 9.4 \pm 0.7$			
607		5 561151				$+6.1 \pm 0.3$			
608	L = pyridine					$+8.2\pm0.2$			
609		$S = C_6H_5Cl$				$+5.4\pm0.4$			
610						$+0.2 \pm 0.2$			
611 612		$S = C_6H_6$				$+3.1 \pm 0.6 \\ +10.9 \pm 1.0$			
613		5 - C6116				$+4.2 \pm 0.3$			
614	1 1	$S = C_6H_5CH_3$				$+10.8 \pm 0.7$			
615	1 1					$+4.8\pm1.4$			
	$M_0(CO)_5(S) + L \rightarrow M_0(CO)_5L + S$	G 1	25	100	5			212	
616 617		$S = n$ -heptane $S = C_6H_5F$				$+2.2 \pm 0.3$			
618		S — C ₆ H ₅ F				$+5.8 \pm 0.8 \\ +6.3 \pm 0.1$			
619		$S = C_6H_5Cl$				$+3.2 \pm 0.3$			
620		$S = C_6H_5CH_3$				$+2.7 \pm 0.4$		213	
621	$Mo(CO)_5bpy \rightarrow Mo(CO)_4bpy + CO$	$C_6H_5CH_3$	26	150	5	-3.9 ± 0.6		213	
	$Mo(CO)_5 dmbpy \rightarrow Mo(CO)_4 dmbpy + CO$	$C_6H_5CH_3$		150	5	-5.6 ± 0.4		213	
	$Mo(CO)_5dpbpy \rightarrow Mo(CO)_4dpbpy + CO$ $Mo(CO)_5en \rightarrow Mo(CO)_4en + CO$	C ₆ H ₅ CH ₃		150	4	-5.4 ± 0.5		210 210	
	$Mo(CO)_5(R_2dab) \rightarrow Mo(CO)_4(R_2dab) + CO$	$C_6H_5CH_3$ $C_6H_5CH_3$		150 150	5	$-5.4 \pm 0.8 \ -9.5 \pm 0.5$		211	
	$(\eta^1\text{-phen})\text{Mo}(\text{CO})_5 \rightarrow (\eta^2\text{-phen})\text{Mo}(\text{CO})_4 + \text{CO}$	$C_6H_5EH_3$ C_6H_5F		150	5	-2.9 ± 0.2		211	
	$Mo(OC)_5L-L \rightarrow Mo(OC)_4\hat{L}-L + CO$			150	5			214	
627	L-L = phen	$C_6H_5CH_3$				-1.6 ± 0.1			
628		C ₆ H ₅ Cl				-11.0 ± 1.6			
629		THF C.H.Mo				-18.2 ± 2.2			
630 631		C_6H_5Me C_6H_5Me				$+4.9 \pm 0.4 \\ +9.5 \pm 0.6$			
632		C ₆ H ₅ Me				$+9.3 \pm 0.0$ $+10.3 \pm 1.2$			
633	-1	C_6H_5Me				-1.2 ± 0.1			
	$M_0(OC)_5L-L \rightarrow M_0(OC)_4L-L + CO$	$C_6H_5CH_3$	25	150				215	
	L-L = phen				4	$+0.6\pm0.2$			
634									
634 635 636	$L-L = 2,9-Me_2phen$				4 5	$-0.1 \pm 0.4 \\ +1.5 \pm 0.3$			

Table 1. (Continued)

no.	reaction	solvent	°C	P, MPa	no. of data	$rac{\Delta V^{\!$	ΔV , cm ³ mol ⁻¹ (method)	ref(s)	remarks
337		toinduced The	erm	al Sub	stituti 5	on Reactions ($+3.3\pm0.5$	Continued)		
638	L-L = 3, 4, 7, 8-Me ₄ phen				5	$+3.3 \pm 0.3 +2.3 \pm 0.4$			
620	$M_0(OC)_5L-L \rightarrow M_0(OC)_4L-L + CO$	lianid CO	10	210	c	1169 09		216	
639 640	L-L = phen L-L = phen	liquid CO ₂	10 20	210	6 7	$^{+16.2\pm0.2}_{+23\pm2}$			
641	L-L = phen		30	210	5	$+36\pm2$			
642	L-L = phen	heptane	25	210	> 5	-3.0 ± 0.1			
643 644	L-L = phen L-L = phen	C ₆ H ₅ CH ₃ C ₆ H ₅ Cl	25	210 210	> 5 > 5	-1.6 ± 0.1			
	$W(CO)_5$ en $\rightarrow W(CO)_4$ en $+ CO$	$C_6H_5CH_3$	25 50	150	4	$-9.8 \pm 1.4 \\ -12.3 \pm 1.4$		210	
	$W(CO)_5(R_2dab) \rightarrow W(CO)_4(R_2dab) + CO$	$C_6H_5CH_3$	40	150	4	-13.7 ± 1.3		210	
647	$(\eta^1\text{-phen})W(CO)_5 \rightarrow (\eta^2\text{-phen})W(CO)_4 + CO$	C_6H_5F	25	150	5	-8.2 ± 0.2		211	
648	$W(OC)_5L-L \rightarrow W(OC)_4L-L + CO$ L-L = phen	supercritical	35	210	> 5	$+181\pm18$		216	150-250 bar
649	L-L = phen	fluid ethane	40			$+36 \pm 4$			150-250 bar
650	L-L = phen		48			$+33\pm3$			150-250 bar
651	L-L = phen		60			$+11 \pm 1$			150-250 bar
652 653	L-L = phen L-L = phen		35 40			+6.7 L/mol +6.2 L/mol			50-100 bar (near critical point 50-100 bar (near critical point
654	L - phen L - L = phen		48			+3.9 L/mol			50–100 bar (near critical point
655	L-L = phen		60			+3.0 L/mol			50-100 bar (near critical point
656	L-L = phen	supercritical	35			+7.2 L/mol			50-100 bar (near critical point
657 658	L-L = phen L-L = phen	fluid CO ₂	42 48			+3.6 L/mol			50-100 bar (near critical point
659	L-L = phen		60			+1.4 L/mol +0.5 L/mol			50-100 bar (near critical point 50-100 bar (near critical point
660	L-L = phen	heptane	25			-4.0 ± 0.2			oo 100 bar (near erricar ponic
661	L-L = phen	$C_6H_5CH_3$	25			$+3.6\pm0.1$			
662	L-L = phen	C ₆ H ₅ Cl	25	100	-	-5.4 ± 0.2		017	
663	$W(OC)_5bpy \rightarrow W(OC)_4bpy + CO$ $W(CO)_5(S) + 1$ -hexene \rightarrow	$C_6H_5CH_3$	25 25	100 100	5 5	-10.9 ± 1.1		217 212	
	$W(CO)_5(S) + F$ Hexche $W(CO)_5(S) + F$		20	100	3			212	
664		S = n-heptane				$+2.7\pm0.4$			
665		$S = C_6 H_5 F$				$+2.5 \pm 0.2$			
666 667	$W(CO)_5dbubpy \rightarrow W(CO)_4dbubpy + CO$	$S = C_6H_5Cl$ $C_6H_5CH_3$	25	150	4	$^{+0.4}\pm 0.3 \ -4.5\pm 0.2$		218	
	$W(CO)_5$ dpbpy $\rightarrow W(CO)_4$ dpbpy $+ CO$	$C_6H_5CH_3$	25		4	-6.4 ± 0.6		218	
669	$W(CO)_5 dmbpy \rightarrow W(CO)_4 dmbpy + CO$	$C_6H_5CH_3$	25	150	4	-8.4 ± 1.0		218	
670	cis-(CB)(Ph ₂ MeP)W(CO) ₄ + 1-hexene → cis-(hexene)(Ph ₂ MeP)W(CO) ₄ + CB	CB	35	150	4	$+9.7 \pm 0.8$		219	
	cis-(IREACHE)(I H2IMET) W(CO) ₄ + CB cis -(CB)(PPh ₂ (CH ₂) _n CH=CH ₂)W(CO) ₄ \rightarrow	СВ	35	150	4			219	
	ring closure								
671 672	n = 1 $n = 2$					$+7.7 \pm 0.8 +5.12 \pm 0.01$			
673	n=2 $n=3$					$+3.12 \pm 0.01$ $+10.7 \pm 0.8$			
674	n=4					$+10.5\pm0.2$			
	THE POST OF PROTE	** 0			n Reac	ctions			0.4.14
675	$\text{Li}^+ + \text{B(OH)}_4^- \rightleftharpoons \text{LiB(OH)}_4$ $\text{B(OH)}_3 + \text{H}_2\text{O} \rightleftharpoons \text{H}^+ + \text{B(OH)}_4^-$	H ₂ O H ₂ O	25 25	200 200	16 16		$+7.8 \pm 0.7$ (a)	220 221	$\mu = 0.1 \text{ M}$
676	B(011)3 + 1120 + 11 + B(011)4	1120	20	200	10		-28.9 ± 0.3 (a)	~~1	$\mu = 0.1 \text{ M (NaCl)}$
677							-31.8 ± 0.1 (a)		$\mu = 1.0 \text{ M (NaCl)}$
	$Na^+ + B(OH)_4^- \rightleftharpoons NaB(OH)_4$	H_2O	25	200	16			221	0.4.3.4.QV (CIV
678 679							$+5.9 \pm 1.0$ (a) $+7.0 \pm 0.2$ (a)		$\mu = 0.1 \text{ M (NaCl)}$ $\mu = 1.0 \text{ M (NaCl)}$
680							-17.4 ± 0.7 (a)		$\mu = 1.0 \text{ M (NaCl)}$ $\mu = 1.0 \text{ M (Me4NCl)}$
681	$Cr(CO)_5O(C_6H_5)(C_2H_5) + C_4H_9N \rightarrow$	CH ₃ CN	25	150	5	-16.6 ± 0.4		222	
600	$Cr(CO)_5O(C_6H_5)(C_2H_5)(C_4H_9N)$	3,4-dihydro-	95	100	9	150 06		223	
002	carbene + 3,4-dihydro-2 H -pyran carbene = (OC) ₅ Cr=C(OMe)(C ₂ Me)	2 <i>H</i> -pyran	23	100	3	-15.0 ± 0.6		223	
683	$(OC)_5Cr=C(OMe)(Ph) + Pr_2N-CN \rightarrow$	MeCy	28	150	4	-17.3 ± 0.3		224	
004	$(OC)_5Cr=C(NPr_2)(N=C(OMe)(Ph))$		00	150	-	00.0 1.4		004	
684	$(OC)_5Cr=C(OMe)(Ph) + Et_2N-CC-Me \rightarrow (OC)_5Cr=C(NEt_2)(C(Me)=C(OMe)(Ph))$	octane	30	150	5	-20.2 ± 1.4		224	
	$(CO)_5Cr(OEt)C_2(C_6H_5) + (NH_2)C_6H_4(X) \rightarrow$	CH ₃ CN		150	5			225	
005	$(CO)_5CrC(OEt)HC_2 (C_6H_5)NH(C_6H_4)X$					07.0 0.0			
685 686	X = CN $X = CH_3CO$		15 44			$-27.9 \pm 0.6 \ -26.6 \pm 0.5$			
687	$X = Cl_{3}CO$ X = Cl		34			-24.5 ± 0.4			
688	X = F		15			-24.6 ± 0.9			
689	X = H		15			-22.2 ± 0.8			
690 691	$X = CH_3$ $X = CH_3O$		15 15			-21.1 ± 1.0 -21.1 ± 1.0			
001	$A - CH_3O$ β -elimination of $(H_2O)_5Cr^{III}$ - $CH_2CH_2OH^{2+}$	H_2O		150		≈1.1 ± 1.U		226	
692		~	-			-4.1 ± 0.2			pH = 2.58
693						-5.4 ± 0.3			pH = 3.05
694 695						-3.6 ± 0.3 -3.1 ± 1.0			pH = 3.53 pH = 3.67
696						-3.1 ± 1.0 -5.4 ± 0.4			pH = 3.67 pH = 4.27
	$Fe(N_4)^{2+} + Im \rightarrow Fe(N_4)Im^{2+}$	DMSO	30	90	10	$+27.2 \pm 1.5$		227	$\mu = 0.2 \text{ M (NaClO}_4)$
	$Fe(N_4)Im^{2+} + Im \rightarrow Fe(N_4)(Im)_2^{2+}$	DMSO	35	100	6	$+21.8\pm0.9$		227	$\mu = 0.2 \text{ M (NaClO}_4)$
600	$(OC)_3 Fe(1-5-\eta-C_6H_7)^+ + 4-CHOpy \rightarrow 2a$	CH ₃ CN	1.4	150	4	5.6. 0.4		228	[A CUOnv] = 0.01 M
699 700			14 14			$^{+5.6}\pm0.4\ -2.9\pm0.1$			[4-CHOpy] = 0.01 M [4-CHOpy] = 0.05 M
, 00			1.4			≈.∪ ⊥ ∪.1			1. 0110py1 - 0.00 M

Table 1. (Continued)

no.	reaction	solvent	<i>T</i> , °C	<i>P</i> , MPa	no. of data	$^{\Delta}V^{\!\!+}, m cm^3mol^{-1}$	$\Delta \bar{V}$, cm ³ mol ⁻¹ (method)	ref(s)	remarks
		Addit		eactio	ns (Co	ntinued)			
701	2a \rightarrow (OC) ₃ Fe(1-5- η -C ₆ H ₇) ⁺ + 4-CHOpy (OC) ₃ Fe(1-5- η -2-MeOC ₆ H ₆) ⁺ + 4-CHOpy \rightarrow 2b	CH CN	25	150	4	$+5.6\pm0.4$		228	
702 703 704	$(OC)_3$ re $(1-3-\eta-2-MeOC_6\Pi_6)$ + 4-CHOpy 20	CH ₃ CN	14 14 14	130	4	$+5.9 \pm 0.3$ $+1.2 \pm 0.1$ -2.9 ± 0.3		220	[4-CHOpy] = 0.02 M [4-CHOpy] = 0.04 M [4-CHOpy] = 0.08 M
705 706	$2b \rightarrow (OC)_3 Fe(1-5-\eta-2-MeOC_6H_6)^+ + 4-CHOpy$		14 25 25			-3.8 ± 0.2 -9.8 ± 0.9 $+18.0 \pm 1.9$			[4-CHOpy] = 0.10 M [4-CHOpy] = variable
708 709	$(OC)_3Fe(1-5-\eta-C_7H_9)^+ + 4-CHOpy \rightarrow 2c$	CH ₃ CN	25	150	5	$+0.4 \pm 1.1 \\ +0.1 \pm 0.1$			[4-CHOpy] = 0.01 M [4-CHOpy] = 0.10 M
710 711	$ \begin{array}{l} 2c \to (OC)_3 Fe (1\text{-}5\text{-}\eta\text{-}C_7 H_9)^+ + 4\text{-}CHOpy \\ (OC)_3 Fe (\eta^5\text{-}2\text{-}MeOC_6 H_6)^+ + Et\text{-}py \to 3b \\ (OC)_3 Fe (\eta^5\text{-}2\text{-}C_7 H_9)^+ + Et\text{-}py \to 3c \end{array} $	CH ₃ CN CH ₃ CN	15 25	150 150	5 5	$pprox 0 \ -7.8 \pm 0.2 \ -6.4 \pm 0.2$		229 229	. 10.
713 714	$\begin{aligned} \text{PFeL} + \text{L} &\rightarrow \text{PFeL}_2 \\ \text{L} &= \text{CN}^- \\ \text{L} &= \text{imidazole} \end{aligned}$	DMF	20	180	4	$-11.4 \pm 2.3 \\ -7.6 \pm 1.3$		230	
715 716	Co(hfac)L $^{n+}$ + OH $^{-}$ \rightleftharpoons Co(hfac)LOH $^{(n-1)+}$ $L = (en)_2$ L = tren	H_2O					$+10.3 \pm 0.2$ (a) $+10.5 \pm 0.2$ (a)	231	
717 718 719 720 721	$L = \beta$ -2,3,2-tet $L = \beta$ -3,2,3-tet L = cyclen L = cyclam L = mer(N)-(gly)(en)						$+13.1 \pm 0.2$ (a) $+14.4 \pm 0.2$ (a) $+12.8 \pm 0.2$ (a) $+15.7 \pm 0.2$ (a) $+2.7 \pm 0.2$ (a)		
722 723 724	L = mer(N)-i-dtma L = cis(O)-aeida L = trans(O)-aeida	MeOH					$+4.2 \pm 0.2$ (a) -1.8 ± 0.2 (a) -8.7 ± 0.2 (a)		
725 726 727 728	L = $(en)_2$ L = tren L = β -2,3,2-tet L = β -3,2,3-tet						$+20.6 \pm 0.3$ (a) $+18.8 \pm 0.2$ (a) $+24.4 \pm 0.2$ (a) $+29.4 \pm 0.4$ (a)		
729 730 731 732 733	L = cyclen $ L = cyclam $ $ L = mer(N)-(gly)(en) $ $ L = mer(N)-i-dtma $ $ L = cis(O)-aeida$						$+18.8 \pm 0.2$ (a) $+20.6 \pm 0.2$ (a) $+10.3 \pm 0.2$ (a) $+8.7 \pm 0.2$ (a) $+0.1 \pm 0.4$ (a)		
734 735 736 737 738	L = trans(O)-aeida $L = (NH_3)_4$ $L = \alpha$ -trien $L = \beta$ -trien L = fac(N)-i-dtma						$\begin{array}{c} -13.3 \pm 0.4 \text{ (a)} \\ +27.1 \pm 0.4 \text{ (a)} \\ +22.9 \pm 0.4 \text{ (a)} \\ +19.8 \pm 0.2 \text{ (a)} \\ +4.0 \pm 0.4 \text{ (a)} \end{array}$		
739 740 741	$\begin{array}{l} L = \alpha\text{-edda} \\ L = \beta\text{-edda} \\ \text{CoX}_2(3\text{-Mepy})_2 + 2(3\text{-Mepy}) \rightleftarrows \text{CoX}_2(3\text{-Mepy})_4 \\ X = \text{Cl}^- \end{array}$	3-Меру	17 18.5	300 150	7 4		-13.0 ± 0.2 (a) -5.0 ± 0.2 (a) -18 (a)	232	
742743	$\begin{array}{c} X = \operatorname{Br}^- \\ \operatorname{CoX}_2(\operatorname{4-Mepy})_2 + 2(\operatorname{4-Mepy}) \rightleftarrows \operatorname{CoX}_2(\operatorname{4-Mepy})_4 \\ X = \operatorname{Cl}^- \end{array}$	4-Меру	20	300	7		-19 (a) -26 (a)	233	
	$\begin{split} X &= Br^-\\ Co(aben)_4Cl + py &\rightleftharpoons Co(aben)_4Cl(py)\\ \textit{R.S.R.S-Ni}(tmc)^{2+} + A &\rightleftharpoons \textit{R.S.R.S-Ni}(tmc)A^{2+} \end{split}$	py A = CH CN	19 25	150 140	5 8		-27 (a) -21.8 (a)	234 235	$0.03 < \mu < 0.04$ M (unadjusted
746 747 748 749	M (CO) O(C H) (C H) C H)	$A = CH_3CN$ $A = C_6H_5CN$ $A = DMF$ $A = H_2O$	0.5	150	-	10.4 0.0	-3.2 ± 0.5 (a) -4.2 ± 0.5 (a) -0.2 ± 0.5 (a) -0.5 ± 0.5 (a)	222	
	$M_0(CO)_5O(C_6H_5)(C_2H_5) + C_4H_9N →$ $M_0(CO)_5O(C_6H_5)(C_2H_5)(C_4H_9N)$ [Rh(MPI)]PF ₆ + CH ₃ CN → products Rh ¹ (β-diketone)[P(OPh) ₃] ₂ + CH ₃ I →	CH₃CN CH₃CN	25 25	150 400	5 8	-16.4 ± 0.3	-4.4 ± 0.5 (a)		
752 753 754	Rh ^{III} (β -diketone)[P(OPh) ₃] ₂ (CH ₃)(I) β -diketone = acac β -diketone = tfac	(CH ₃) ₂ CO (CH ₃) ₂ CO	25 21	150 140	4 7 4	-17.3 ± 0.7 -18.7 ± 1.0 -14.5 ± 0.8		176 237 176	
755 756 757 758 759	β -diketone = trac β -diketone = cupf β -diketone = TFBA	(CH ₃) ₂ CO (CH ₃) ₂ CO (CH ₃) ₂ CO DCE DCM CHCl ₃	25 25 21 21 21 21	150 150 130 120 130 110	4 5 4 5 5	-14.5 ± 0.8 -17.1 ± 0.8 -19.3 ± 0.5 -9.1 ± 0.3 -17.7 ± 0.5 -22.7 ± 0.4		176 176 237 237 237 27	
	$\begin{array}{l} Rh^{I}(cupf)[P(OPh)_{3}](CO) + CH_{3}I \rightarrow \\ Rh^{III}(cupf)[P(OPh)_{3}](CO)(CH_{3})(I) \\ Rh(sacac)(CO)(PPh_{3}) + CH_{3}I \rightarrow products \end{array}$	CH₃OH	25 25	150 100	4 5	-24.9 ± 0.5		176 238	
761 762 763 764 765		$\begin{array}{c} CHCl_3 \\ C_6H_5Cl \\ CH_2Cl_2 \\ ClH_2CCH_2Cl \\ (CH_3)_2CO \end{array}$				$\begin{array}{c} -16.9 \pm 1.0 \\ -13.6 \pm 0.3 \\ -18.3 \pm 0.9 \\ -13.2 \pm 0.5 \\ -15.2 \pm 0.6 \end{array}$			
766 767	$Rh(cupf)(CO)(PPh_3) + CH_3I \rightarrow products$	CH ₃ NO ₂ CH ₃ CN				$-15.2 \pm 0.7 \\ -13.9 \pm 0.7$			

Table 1. (Continued)

10.	reaction	solvent	<i>T</i> , °C	<i>P</i> , MPa	no. of data	${\Delta V^{\! +}, top cm^3 m mol^{-1}}$	$\Delta ar{V}$, cm 3 mol $^{-1}$ (method)	ref(s)	remarks
		Addition	Reacti	ons (Co	ntinue	,			
88		CHCl ₃				-17.3 ± 0.8			
39		CH ₂ Cl ₂ ClH ₂ CCH ₂ Cl				-17.4 ± 0.8 -16.1 ± 0.3			
'0 '1		(CH ₃) ₂ CO				-16.1 ± 0.3 -15.7 ± 0.7			
2		CH ₃ CN				-25.4 ± 0.7			
3	$Pd(bpy)Me_2 + MeI \rightarrow Pd(bpy)(I)Me_3$	(CH ₃) ₂ CO	20	150	5	-11.9 ± 0.6		239	[MeI] = 0.04 M
4	$Pd(bpy)(I)Me_3 \rightarrow C_2H_6 + Pd(bpy)(I)Me$	(CH ₃) ₂ CO	20	150	5	$+17.3 \pm 1.4$		239	[NaI] = 0.04 M
	$[Pd(C_6H_3RCH_2NMe_2)X]_2 + 2PhC_2Ph \rightarrow$	CHCl ₃	25	150	4			240	
	$2(Pd(C_6H_3RCH_2NMe_2)X(PhC_2Ph))$	-							
5	R, X = F, Cl					-18.6 ± 0.9			
6	R, X = H, Cl					-15.0 ± 0.5			
7	R, X = MeO, Cl					-16.2 ± 1.4			
8	R, X = H, Cl	CHC	0.5	150		-14.4 ± 1.2		0.40	
	$[Pd(C_6H_3RCH_2NMe_2)X]_2 + 2EtC_2Et \rightarrow$	CHCl ₃	25	150	4			240	
9	$2(Pd(C_6H_3RCH_2NMe_2)X(EtC_2Et))$ R, X = H, I					$+0.9 \pm 0.7$			
0	$H_2C = CHCH_2SnBu^t_3 + Cl_3CCHO \rightarrow$	H ₂ C=CH ₂ SnBu ^t ₃	37.5	80	5	-11.7 ± 0.3		241	
	Cl ₃ CCH(OSnBu ^t ₃)CH ₂ CH=CH ₂	Tize Citzonbu 3	07.0	00	· ·	11.7 ± 0.0		~11	
1	$Eu(fod)_3 + adamantine \rightarrow products$	$CDCl_3$	21	100	6	$+8\pm2$		242	
	carbene $+$ 3,4-dihydro-2 H -pyran	3,4-dihydro-	25	100	3			223	
	carbene =	2 <i>H</i> -pyran							
2	$(OC)_5W=C(OMe)(C_2Me)$					-14.9 ± 0.5			
3	$(OC)_5W=C(OEt)(C_2Ph)$					-17.8 ± 0.5			
	$(CO)_5WC(OEt)C_2Ph + C_3H_3NNH \rightarrow$	MeCN:C ₆ H ₅ CH ₃	44	100	4			243	
	(CO) ₅ WC(OEt)CHCPhC ₃ H ₃ N ₂	(% vol)				100 14			
4 5		100:0				-18.0 ± 1.4			
3		35:65 15:85				$-19.0 \pm 1.2 \\ -19.7 \pm 0.9$			
, 7		0:100				-19.7 ± 0.9 -22.7 ± 0.6			
8	$(OC)_5W=C(OMe)(Ph) + Pr_2N-CN \rightarrow$	MeCy	60	150	4	-20.7 ± 1.1		224	
_	$(OC)_5W=C(NPr_2)(N=C(OMe)(Ph))$				_				
9	$(OC)_5W=C(OMe)(Ph) + Et_2N-CC-Me \rightarrow (OC)_5W=C(NEt_2)(C(Me)=C(OMe)(Ph))$	octane	25	150	5	-24.7 ± 1.0		224	
	$W(CO)_5O(R1)(R2) + C_4H_9N \rightarrow W(CO)_5O(R1)(R2)(C_4H_9N)$		25	150	5			222	
)	$R1, R2 = C_6H_5, C_2H_5$	CH ₃ CN				-15.0 ± 0.7			
1	$R1, R2 = C_6H_5, C_2H_5$	$C_6H_4Cl_2$				-16.5 ± 0.6			
2	$R1, R2 = C_6H_5, C_2H_5$	C_6H_5Cl				-17.0 ± 0.9			
3	$R1, R2 = C_6H_5, C_2H_5$	$C_6H_5CH_3$				-18.8 ± 0.8			
4	R1, R2 = C_6H_5 , C_2H_5	<i>n</i> -heptane				-21.9 ± 0.7			
5	$R1, R2 = CH_3, CH_3$	CH ₃ CN				-15.3 ± 0.8			
	$H_2Os_3(CO)_{10} + L \rightarrow H_2Os_3(CO)_{10}L$	C_6H_5Cl	30	180		100 104		244	
6	L = etbp					-16.6 ± 2.4			
7 8	$L = P(OMe)_3$ $L = P(OPh)_3$					$-13.2 \pm 1.6 \\ -12.8 \pm 0.7$			
9	$L = P(OPI)_3$ $L = P(OPI)_3$					-12.8 ± 0.7 -12.7 ± 0.5			
)	$L = P(Bu^n)_3$ $L = P(Bu^n)_3$					-16.1 ± 1.1			
1	$L = PPh_2(OEt)$					-14.9 ± 1.7			
2	$L = PPh_3$					-20.2 ± 0.2			
3	$L = P(p-F_3CC_6H_4)_3$					-20.4 ± 0.6			
1	$L = P(p-FC_6H_4)_3$					-21.0 ± 1.0			
5	$L = P(p - MeC_6H_4)_3$					-19.3 ± 0.4			
3	$L = P(p\text{-MeOC}_6H_4)_3$					-19.0 ± 0.8			
7	$L = (m\text{-tol})_3$					-16.4 ± 0.7			
3	$L = PBzPh_2$					-20.9 ± 0.8			
9	$L = PCyPh_2$					-26.2 ± 1.0			
)	$L = (NMe_2)_3$					-31.8 ± 0.9			
2	$egin{aligned} & L = PCy_2Ph \ & L = PBz_3 \end{aligned}$					$-22.9 \pm 1.0 \\ -20.4 \pm 0.7$			
3	$L = PBZ_3$ $L = P(o-tol)_3$					-20.4 ± 0.7 -8.1 ± 1.4			
1	$Me_2Pt(bpy) + MeI \rightarrow Me_3Pt(bpy)^+ + I^-$	(CH ₃) ₂ CO	25	200	5	-11.7 ± 0.3		245	
5	$Me_2Pt(bpy) + EtI \rightarrow EtMe_2Pt(bpy)^+ + I^-$	(CH ₃) ₂ CO	25	200	5	-9.7 ± 0.7		25	
3	$HF \rightleftharpoons H^+ + F^-$	Formation a H ₂ O	nd Disa 25	sociatio 200	on Reac	etions	$+3.3 \pm 0.5$ (b)	246	$\mu = 0.1 \text{ M}$
7	$Na^+(C222) + en \rightarrow products$	en	30	200	12	$+8.9\pm0.4$	(7)	247	•
3	$NaF \rightleftharpoons Na^+ + F^-$	H_2O	25	200	16		-9.6 ± 0.1 (b)	246	$\mu = 0.1 \text{ M}$
	$CryNa^+ \rightarrow Cry + Na^+$			200	5-7			248	
)		DMSO	40			$+2.1 \pm 0.7$			
)	C N + III C W - Y	DMF	25	000		$+2.0\pm0.2$		0.40	
	$CryNa^+ + Hdca \rightarrow CryH^+ + Na^+ + dca^-$	DME	25	200	5-7	0.0 1.0		248	
1		DMF McCN				-8.0 ± 1.0	19910460	940	
2	$C_{\text{rev}} \perp N_{\text{O}}^{+} \rightarrow C_{\text{rev}}N_{\text{O}}^{+}$	MeCN	95	200	5. 7	-16.0 ± 0.8	$+3.3 \pm 0.4$ (b)	248 248	
} 1	$Cry + Na^+ \rightarrow CryNa^+$ $Cry + Hdca \rightarrow CryH^+ + dca^-$	DMSO DMSO	25 25	200 200	$5-7 \\ 5-7$	$+5.4 \pm 1.1 \\ -11.1 \pm 2.6$		248 136	$\mu = 1.06 \text{ M (KC)}$
ŧ õ	18-crown-6 + $K^+ \rightarrow K(18$ -crown-6)+	H ₂ O	25 25	200	5-7	$-11.1 \pm 2.0 + 10.9 \pm 0.2$		249	$\mu = 1.00 \text{ M} \text{ (KC)}$ $\mu = 3.00 \text{ M}$
•	15 STOWN O THE IN(10 CHOWN PO)	-120	20	~00	5 1	10.0 ± 0.2		~40	(NaClO ₄ /HC
	$VO_2^+ + H_2O_2 \rightleftharpoons VO(O_2)^+ + H_2O$	H_2O	20	160	8				
	[H ⁺]-independent path					$+2.8\pm1.0$			
6 7 8	1/[H ⁺]-dependent path [H ⁺]-dependent path					$+9.9 \pm 1.7 \\ +14.2 \pm 3.2$			

Table 1. (Continued)

no.	reaction	solvent	<i>T</i> , °C		no. of data	ΔV^{\dagger} , cm ³ mol ⁻¹	$\Delta ar{V}$, cm $^3 ext{mol}^{-1}$ (method)	ref(s)	remarks
						s (Continued)			
	$VO(O_2)_2^+ + H_2O_2 \rightleftharpoons VO(O_2)_2^- + 2H^+$	H ₂ O	20	200	8	0.0 ± 0.2	1107 15 (-)	249	1 0 M (NaClO)
	$H^+ + ClO_2^- \rightleftharpoons HClO_2$ $Cu^{2+} + C221 \rightarrow Cu(C221)^{2+}$	H ₂ O DMSO	5 35	150 80	5 8	-1.6 ± 1.5	$+10.7 \pm 1.5$ (a)	250	$\mu = 1.0 \text{ M (NaClO}_4)$
	$Cu(C221)^{2+} \rightarrow Cu^{2+} + C221$	DMSO		100	6	$+1.6 \pm 0.5$		250	
833	$Cu^{2+} + C221 \rightarrow Cu(C221)^{2+}$	DMF	25	200	9	-0.4 ± 0.6		250	
834	$(C_6H_4CH_2PdN(CH_3)_2I)_2 + (2)2,6-Me_2py \rightarrow$	CH ₃ Cl	25	100	3	-22.6 ± 2.9		251	
005	2(C ₆ H ₄ CH ₂ PdN(CH ₃) ₂ I-2,6-Me ₂ py)		00	150		100 14		050	0.014
835	ReMeO ₃ + H ₂ O ₂ + Br ⁻ \rightleftharpoons ReMeO ₂ (η^2 -O ₂)(H ₂ O) + Br ⁻ , with ReMeO ₃	H_2O	20	150	4	-10.6 ± 1.4		252	$\mu = 2.0 \text{ M}$
836	$H_2O_2 + 2Br^- + 2H^+ \rightarrow Br_2 + 2H_2O$, without ReMeO ₃	H_2O	20	150	4	-7.5 ± 1.1		252	$\mu = \textbf{2.0 M}$
837	$\begin{array}{l} (C_6H_3(4\text{-MeO})CH_2PtN(CH_3)_2Cl)_2 + (2)4\text{-Mepy} \rightarrow \\ 2(C_6H_3(4\text{-MeO})CH_2PtN(CH_3)_2Cl\text{-}4\text{-Mepy}) \end{array}$	CH ₃ Cl	25	100	5	-14.5 ± 1.3		251	
	(9994) (9994)	Isomeri			ctions				
838	$(C221)_1 \rightleftharpoons (C221)_2$	Me ₂ SO	25	200			+40 (a)	248	
839		DMF					+41 (a)		
840		CH ₃ CN					+43 (a)		
841	cis -TiCl ₄ ·2TMPA $\rightleftharpoons trans$ -TiCl ₄ ·2TMPA	$CHCl_3$	-30				-1.3 ± 0.8 (a)	253	
	cis -TiCl ₄ ·2TMPA $\rightleftharpoons trans$ -TiCl ₄ ·2TMPA	$CHCl_3$	67	230	8	$+6.2 \pm 1.8$		64	
843	$Cr(NH_3)_5(OCHNH_2)^{3+} \rightarrow Cr(NH_3)_5(NHCHO)^{2+} + H^+$	H_2O	25	100	5	-7.6 ± 0.8		121	$\mu = 1.0 \text{ M (NaClO4)}$
844	$Cr(NH_3)_5(OC(NH_2)_2{}^{3+} \rightarrow Cr(NH_3)_5(NHCONH_2)^{2+} + H^+$	H_2O	23.5	100	5	-9.8 ± 0.9		121	$[OH^-] = 0.1 \text{ M}$ $\mu = 1.0 \text{ M (NaClO}_4),$
815	Fe(CO) ₂ (1,3-cyclooctadiene)(PPh ₃), fluxionality	C ₆ H ₅ CH ₃	-73	200	9	$+0.5\pm0.2$		254	$[OH^{-}] = 0.1 \text{ M}$
	$Te(CO)_2(1,3-CyCloOtcallerle)(T + T_{13})$, fluxionality $trans-Co(en)_2(OH_2)(OSeO_2H)^{2+} \Rightarrow cis-Co(en)_2(OH_2)(OSeO_2H)^{2+}$	H_2O	41	140	5	$+0.3 \pm 0.2 +7.2 \pm 0.4$		162	pH = 1
	$trans$ -Co ^{III} (en) ₂ (H ₂ O)X ⁿ⁺ $\rightarrow cis$ -Co ^{III} (en) ₂ (H ₂ O)X ⁿ⁺	H_2O		200	5-6			255	HClO ₄ solution
847	$X = H_2O$		45			$+4.9\pm1.3$	-1.0 ± 1.2 (b)		$\mu = 1.05 \text{ M}$
848	$X = OH^-$		13			$+6.1\pm0.4$	-5.5 ± 0.4 (b)	255	$\mu = 0.03 \text{ M}$
849	$X = NCS^-$		63			$+7.5\pm0.3$	-0.8 ± 0.0 (b)		$\mu = 0.03 \text{ M}$
850	$X = NH_3$		73			$+7.4 \pm 0.7$	$+0.4 \pm 0.2$ (b)		$\mu = 0.26 \text{ M}$
851	$X = NO_2^-$		65			$+11.4 \pm 1.0$	$+1.5 \pm 0.5$ (b)		$\mu = 0.01 \text{ M}$
852	$X = Br^-$		30			$+2.1 \pm 0.7$	$-2.8 \pm 0.0 \text{ (b)}$		$\mu = 0.02 \text{ M}$
853 854	$X = N_3^-$ $X = OH^-$		30 45			$+7.5 \pm 0.3 \\ +11.4 \pm 0.5$	-2.3 ± 0.2 (b) -3.7 ± 0.5 (b)		$\mu = 0.01 \text{ M}$ $\mu = 0.07 \text{ M}$
855	X = OH $X = NH_3$		45			$+18.6 \pm 0.6$	-1.5 (b)		$\mu = 0.07 \text{ M}$ $\mu = 0.03 \text{ M}$
000	cis -Co ^{III} (en) ₂ (H ₂ O)X ⁿ⁺ $\rightarrow trans$ -Co ^{III} (en) ₂ (H ₂ O)X ⁿ⁺	H_2O		200	5-6	10.0 ± 0.0	110 (5)		HClO ₄ solution
856	$X = H_2O$		45			$+5.8\pm1.2$			$\mu = 1.05 \text{ M}$
857	$X = OH^-$		13			$+11.6\pm0.4$			$\mu = 0.03 \text{ M}$
858	$X = NCS^-$		63			$+8.3 \pm 0.3$			$\mu = 0.03 \text{ M}$
859	$X = NH_3$ $Y = NO^{-1}$		73			$+7.0 \pm 0.9 \\ +10.1 \pm 1.0$			$\mu = 0.26 \text{ M}$
860 861	$X = NO_2^-$ $X = Br^-$		65 30			$^{+10.1}\pm1.0$ $^{+4.9}\pm0.7$			$\mu = 0.01 \text{ M}$ $\mu = 0.02 \text{ M}$
862	$X = N_3^-$		30			$+9.8 \pm 0.3$			$\mu = 0.01 \text{ M}$
863	$X = OH^-$		45			$+15.1 \pm 0.5$			$\mu = 0.07 \text{ M}$
864	$X = NH_3$		45			$+19.5\pm1.1$			$\mu = 0.03 \text{ M}$
	$trans$ -Co(en) ₂ (H ₂ O) ₂ ³⁺ $\rightarrow cis$ -Co(en) ₂ (H ₂ O)(OH) ²⁺ + H ⁺	H_2O		200			$+3.0 \pm 0.1$ (b)		
	$trans$ -Co(en) ₂ (H ₂ O)(OH) ²⁺ $\rightarrow trans$ -Co(en) ₂ (OH) ₂ ²⁺ + H ⁺	CTT CI		200		40.00	$+5.9 \pm 0.0$ (b)	~~ ~~	
	cis-ZrCl ₄ ·2TMPA → trans-ZrCl ₄ ·2TMPA $(\mu$ -H) ₃ Ru ₃ $(\mu$ ₃ -CCO ₂ -Me)(CO) ₉ →	CHCI ₃ decane	-12.5 57	150 200	9 5	$-1.6 \pm 0.6 \\ -0.3 \pm 0.7$		82,83 256	
808	$(\mu$ -H) ₂ Ru ₃ $(\mu$ ₃ -CCO ₂ -Me)(CO) ₉ $(\mu$ -H) ₂ Ru ₃ $(\mu$ ₃ - η ² -CHCO ₂ -Me)(CO) ₉	uecane	37	200	J	-0.3 ± 0.7		230	
869	$(\mu-H)_3$ Ru ₃ $(\mu_3$ -CSEt)(CO) ₉ \rightarrow	decane	57	200	5	$+22.0\pm1.4$		256	
	$(\mu\text{-H})\text{Ru}_3(\mu_3\text{-}\eta^2\text{-CH}_2\text{SEt})(\text{CO})_9$,			_				
870	$HRu_3(\mu_3-\eta^3-EtSCCMeCMe)(CO)_9 \rightarrow Ru_3(\mu-SEt)(\mu_3-\eta^3-CCMeCHMe)(CO)_9$	decane	48	210	5	$+12.7 \pm 1.1$		257	
871	ttt -RuCl ₂ (CO) ₂ (Ph ₂ MeP) ₂ $\rightarrow ccc$ -RuCl ₂ (CO) ₂ (Ph ₂ MeP) ₂	CHCl ₃	63	140		$+19\pm2$		258	
	ttt -RuCl ₂ (CO) ₂ (PhMe ₂ P) ₂ $\rightarrow ccc$ -RuCl ₂ (CO) ₂ (PhMe ₂ P) ₂	СВ	70	140		-19 ± 2		258	
873	t -RuCl ₂ (CO) ₂ (Ph ₂ MeP) ₂ $\rightarrow c$ -RuCl ₂ (CO) ₂ (Ph ₂ MeP) ₂	$CHCl_3$	34	140		$+15\pm2$		258	
	t -RuCl ₂ (CO) ₂ (PhMe ₂ P) ₂ $\rightarrow c$ -RuCl ₂ (CO) ₂ (PhMe ₂ P) ₂	TCE	64	140		$+16\pm2$		258	
875	$(\mu-H)_2 Ru_3(\mu_3-CHCO_2Me)(CO)_9$	$CD_3C_6D_5$	36	200	9	$+4.1 \pm 0.3$		259	
	hydride exchange (bridging, terminal)		95	150	-			900	
	$C_6H_4XP(p-XC_6H_4)_2Rh_2(\mu-O_2CHCH_3)_2(O_2CHCH_3)-$ $(p-YC_6H_4)_3PCH_3 \rightarrow (C_6H_4XP(p-XC_6H_4)_2-$		25	150	5			260	
	$(p-YC_6H_4)_2)_2(CH_3)_2Rh_2(\mu-O_2CHCH_3)_2$								
	spontaneous process	$C_6H_5CH_3$				-22.7 ± 0.2			
876	X = H, Y = H					-21.5 ± 0.5			
877	X = H, Y = Me					-23.1 ± 1.1			
878	X = Me, Y = H					-21.4 ± 0.7			
879	X = Me, Y = Me	CH ₃ COOH				152 02			
880	acid-assisted process $X = H, Y = H$	СП₃СООП				$-15.3 \pm 0.2 \\ -13.8 \pm 0.2$			
881	X = 11, 1 = 11 X = H, Y = Me					-14.8 ± 0.2			
882	X = H, $Y = HX = Me$, $Y = H$					-13.7 ± 0.3			
883	X = Me, Y = Me								
	$trans$ -(NZ)W(CO) ₂ (F) + L $\rightarrow cis$ -(NZ)W(CO)(L)(F)							261	
884	no CO $(L=0)$		60	100	5	$+15.6\pm0.4$			
885	L = CO		60	100	5	$+3.9 \pm 0.2$			
886	$L = P(OMe)_3$	CD CI	25	150	4	$+15.7 \pm 0.6$		950	
887	H(μ-H)Os ₃ (CO) ₁₀ (PPh ₃) hydride exchange (bridging, terminal)	$\mathrm{CD_2Cl_2}$	-19.5	200	9	-0.8 ± 0.4		259	
	nyuruc exchange (briuging, terminal)								

Table 1. (Continued)

no.	reaction	solvent	°C	P, MPa	no. of data	${\Delta V^{\!\!+}, \atop { m cm}^3 { m mol}^{-1}}$	$\Delta ar{V}$, cm 3 mol $^{-1}$ (method)	ref(s)	remarks
	Ir (CO) (SCU)	Isomerization		ctions 200	s (Con	tinued)		262	
888	Ir ₄ (CO) ₉ (SCH ₃) ₃ bridged ≠ unbridged		1.3	200	,		$+15.4 \pm 0.4$ (b)	202	
889	intramolecular CO exchange	CD CI	F 1	100	~	$+8.3 \pm 0.8$		000	
	$Ir_2Rh_2(CO)_{11}PPh_3$ (fluxional PPh ₃ migration) $(O_2SO)Pt(CN)_4Cl^{3-} \rightarrow (O_3S)Pt(CN)_4Cl^{3-}$	CD ₂ Cl H ₂ O	51 25	180 150	7 10	$+10.1 \pm 1.5 \\ +5.3 \pm 0.4$		263 208	$\mu = 1.0 \text{ M},$
		El	T	. C . T					$[H^+] = 0.03M$
892	V^V + acetoin \rightleftharpoons MeCOCOMe + $2V^{IV}$ + $2H^+$	Electron	-Trar	ister k	teaction (ons -3.5 ± 0.4		264	
893	V^{V} + hydroxyacetone \rightleftharpoons MeCOCHO + $2V^{IV}$ + $2H^{+}$				_	-1.3 ± 0.7		264	
894	$Cr(H_2O)_6^{2+} + -R \rightarrow products$ $-R = CH_3$	H_2O	20	150	5	$+6.3 \pm 1.0$		265	
895	$-R = CH_2CH_2OH$					$+4.0 \pm 1.0$			
896 897	$-R = CH(CH_3)OH$					$+3.5 \pm 1.0$			
898	-R = C(CH3)2OH -R = CH(CH ₃)CH ₂ OH					$+5.7 \pm 1.0 \\ +3.9 \pm 1.0$			
899	$-R = CH_2C(CH_3)_2OH$					$+3.4\pm1.0$			
900 901	-R = CH2C(CH3)2NH2 -R = CH(OH)CH ₂ OH					$+3.6 \pm 1.0 \\ +4.8 \pm 1.0$			
902	$-R = CH(CH_3)CCH_2CH_3$ $-R = CH(CH_3)OCH_2CH_3$					$+4.3 \pm 1.0$ $+4.3 \pm 1.0$			
903	$-R = CH(CH_3)CH(CH_3)OH$					$+3.9\pm1.0$			
	$Cr(H_2O)_6^{2+} + H_2O_2 + reactant \rightarrow products$ reactant	H_2O	25	200	4	$+3.5\pm0.2$		266	$\mu = 0.5 \text{ M}, \text{ pH} = 3$
904	0.01 M CF ₃ COO ⁻					$+5.4 \pm 0.5$			
905	0.1 M CF ₃ COO ⁻					$+2.3 \pm 0.6$			
906 907	0.01 M CH ₃ COO ⁻ 0.32 M CH ₃ COO ⁻					-6.0 ± 0.2 -1.1 ± 1.3			
908	H ₂ O					1.1 ± 1.0			
909 910	$Cr(II)$ reactants $\rightarrow Cr(H_2O)_5(CMe_2OH)^{2+}$	H_2O	25 20	150	4	157	-38 ± 3 (a)	267	$\mu = 0.5 \text{ M}, \text{ pH} = 5.3$
						+5.7			$pH = 4.1,$ $[MeCO_2] = 0$
911			20			+6.0			$pH = 5.2, [MeCO_2] = 0.009 M$
912			20			-3.9			$pH = 5.2, [MeCO_2] = 0.050 M$
913			20			-7.4			$pH = 5.2, [MeCO_2] = 0.27 M$
	$Cr(bpy)_3^{3+/2+}$ (redox couple)	H ₂ O	25	130	8		+21.1 (B)	268	$\mu = 0.1 \text{ M (KNO}_3)$
915	$Cr(CNdipp)_6^{2+} + Co(nox)_3(BBu)_2 \rightarrow$ $Cr(CNdipp)_6^{+} + Co(nox)_3(BBu)_2^{+}$	CH₃CN	25	150	11	$+2.2\pm2$		269	Bu ₄ NBF ₄ electrolyte
	$Cr(CNdipp)_6^{2+} + Co(nox)_3(BPh)_2 \rightarrow$	CH_3CN		150	11			269	
916	$\operatorname{Cr}(\operatorname{CNdipp})_6^+ + \operatorname{Co}(\operatorname{nox})_3(\operatorname{BPh})_2^+$		20			$+5.6\pm2$			
917			16			$+10.8\pm1$			
918 919			19 19			$+11.0 \pm 1 \\ +10.8 \pm 1$			$[Bu_4N(BF_4)] =$
									$4 \times 10^{-5}\mathrm{M}$
920			19			$+9.7 \pm 2$			$[Bu_4N(BF_4)] = 5 \times 10^{-5} M$
921			19			$+7.3 \pm 2$			$[Bu_4N(BF_4)] = 10 \times 10^{-5} M$
922			19			$+8.2\pm2$			$\begin{array}{c} [Bu_4N(BF_4)] = \\ 25 \times 10^{-5} M \end{array}$
923			19			$+8.5\pm2$			$\begin{array}{c} [Bu_4N(BF_4)] = \\ 50 \times 10^{-5}M \end{array}$
924			19			$+11.0\pm2$			$[Bu_4N(BF_4)] = 0.120 M$
925			19			$+15.0\pm2$			$[Bu_4N(BF_4)] =$
926	$Mn^{III}(cydta)^- + HONH(SO_3)^- \rightarrow products$	H_2O	25	100	5	-10 ± 1		270	0.204 M $\mu = 0.25 \text{ M}$
	$MnO_4^{1-/2-}$ (self-exchange)	$_{\mathrm{D_2O}}^{75\%~\mathrm{H_2O-25\%}}$	45	180	10			271	$[OH^{-}] = 0.2 \text{ M},$ $\mu = 1.1 \text{ M}$
	$k_{\rm obs} = k_0 + k_{\rm M}[{\rm M}^+]$	D_2O							μ 1.1 141
927						$-22.8 \pm 1.2 \\ +3.3 \pm 1.0$			
	$M^+ = Na^+, k_M$ $M^+ = K^+, k_M$					-1.1 ± 0.3			
	Mn(CNC(CH ₃) ₃) ₆ ^{+/2+} (OS self-exchange)	arr arr		200		40.4		272	0.0016
930 931		CH₃CN CH₃OH	6 6		10 6	$-12 \pm 1 \\ -20 \pm 2$			$\mu = 0.69 \text{ M}$ $\mu = 0.17 \text{ M}$
932		C_6H_5CN	12		9	-9 ± 2			$\mu = 0.52 \text{ M}$
933		EtOH	7		9	-16 ± 2			$\mu = 0.16 \text{ M}$
934 935		(CH ₃) ₂ CO (CH ₃ O) ₃ PO	6 6		10 6	$-20 \pm 2 \\ -10 \pm 2$			$\mu = 0.16 \text{ M}$ $\mu = 0.16 \text{ M}$
936		Et ₂ CO	7		7	-22 ± 2			$\mu = 0.18 \text{ M}$
937		DCM	0	200	11	-18 ± 2			$\mu = 0.11 \text{ M}$
938		CH ₃ CN/CH ₂ Cl ₂ 9:1	1	200	10	-12 ± 2			
939		4:1	0		14	-14 ± 2			$\mu = 0.17 \text{ M}$
940 941		7:3 3:2	1 0		23 13	$-15 \pm 2 \\ -15 \pm 2$			$\mu = 0.18 \text{ M}$
942		1:1	1		14	-13 ± 2 -14 ± 2			$\mu = 0.16 \text{ M}$ $\mu = 0.14 \text{ M}$
943		2:3	2		19	-19 ± 3			$\mu = 0.12 \text{ M}$
944		3:7	1		13	-15 ± 3			$\mu = 0.12 \text{ M}$

Table 1. (Continued)

no.	reaction	solvent	<i>T</i> , °C		no. of data	ΔV^{\dagger} , cm 3 mol $^{-1}$	ΔV , cm ³ mol ⁻¹ (method)	ref(s)	remarks
045	I	Electron-Transf		ns (C					0.19 M
945 946		1:4 1:9	2 2			$-13 \pm 3 \\ -15 \pm 2$			$\mu = 0.12 \text{ M}$ $\mu = 0.11 \text{ M}$
0.10		CH ₃ CN/BrC ₆ H ₅	~	200	Ü	10 - 2			p 0111111
947		4:1	2			-12 ± 4			$\mu = 0.15 \text{ M}$
948 949		1:1 1:4	2 2			-15 ± 3 -13 ± 3			$\mu = 0.15 \text{ M}$ $\mu = 0.11 \text{ M}$
949		DCM/BrC ₆ H ₅	۷		14	-13 ± 3	-22.6 ± 0.8 (a)		$\mu - 0.11 \text{ M}$
950		4:1	1	100	14	-17 ± 2	22.0 ± 0.0 (a)		$\mu = 0.08 \text{ M}$
951		1:1	1	100		-21 ± 3			$\mu = 0.11 \text{ M}$
952	$Mn(CNC_6H_{11})_6^{+/2+}$ (OS self-exchange)	3:7	3	300	18	-16 ± 2		272	$\mu = 0.14 \text{ M}$
953	Will(CivC ₆ H ₁₁) ₆ (OS self-exchange)	CH ₃ CN	2	200	11	-17 ± 1		212	$\mu = 0.20 \text{ M}$
954		CH ₃ OH	2	200		-16 ± 2			$\mu = 0.18 \text{ M}$
955		(CH ₃) ₂ CO	3	300		-20 ± 2			$\mu = 0.19 \text{ M}$
956		DCM BrC ₆ H ₅	3 2	300 200		$-21 \pm 4 \\ -9 \pm 2$			$\mu = 0.12 \text{ M}$
957		DCM/BrC ₆ H ₅	۷	200	10	-9 ± 2			$\mu = 0.17 \text{ M}$
958		7:3	3	300	21	-17 ± 2			$\mu = 0.09 \text{ M}$
959		1:1	3	300		-18 ± 2			$\mu = 0.10 \text{ M}$
960	$(Fe^{II})_2O(O_2Ph)(N(CH_2CEtN_2C_6H_4)_2)_2 + O_2 \rightarrow$	3:7	3	300 140		-10 ± 4 -12.8 ± 0.9		273	$\mu = 0.10 \text{ M}$
901	$(Fe^{III})_2O(O_2FI)(N(CH_2CEIN_2C_6H_4)_2)_2 + O_2 - (Fe^{III})_2O(O_2)(O_2Ph)(N(CH_2CEIN_2C_6H_4)_2)_2$	propionitrile	20	140	11	-12.8 ± 0.9		213	
	$Fe^{II}(edta)/O_2 \rightarrow Fe^{III}(edta)$	H_2O	25					274	$pH = 5$, $\mu = 0.5 M$
962	[Fe(edta)] = 0.0025 M			100		-16.9 ± 1.2			•
963	[Fe(edta)] = 0.02 M $Fe^{II}(hedtra)/O_2 \rightarrow Fe^{III}(hedtra)$	шо	95	95	5	-12.7 ± 0.9		074	-II - 5 0.5 M
964	[Fe(hedtra)] = 0.0025 M	H_2O	25	95	5	-11.6 ± 1.2		274	$pH = 5, \mu = 0.5 M$
	$Fe^{II}(dtpa)/O_2 \rightarrow Fe^{III}(dtpa)$	H_2O	25					274	$pH = 5$, $\mu = 0.5 M$
965	[Fe(dtpa)] = 0.02 M	** 0	0.5	100		-7.1 ± 0.4			0.4.14 (07.00.)
966	$Fe(H_2O)_6^{3+} + Co([9]aneS_3)_2^{2+} \rightarrow Fe(H_2O)_6^{2+} + Co([9]aneS_3)_2^{3+}$	H_2O	25	200	7	-15.9 ± 0.3	-17.1 ± 0.4 (a)	275	$\mu = 0.1 \text{ M (CF}_3 \text{SO}_3^-)$
967	$Fe(H_2O)_6^{3+} + Co(sep)^{2+} \rightarrow Fe(H_2O)_6^{2+} + Co(sep)^{3+}$	H ₀ O	2	210	7	-5.0		275	$\mu = 0.3 \text{ M (CF}_3 \text{SO}_3^-)$
	(CN) ₅ Fe(CN)Pt(NH ₃) ₄ (CN)Fe(CN) ₅ ⁴⁻ ,	H ₂ O	25	150		-5.7 ± 0.2		276	, , , , , , , , , , , , , , , , , , , ,
	intramolecular one-electron-transfer event	** 0	0.5		_	40 . 00			0.4.14.01.010.)
	$H_2Asc + Fe(CN)_6^{3-} \rightleftharpoons H_2Asc^{*+} + Fe(CN)_6^{4-}$ $HAsc^- + Fe(CN)_6^{3-} \rightleftharpoons HAsc^* + Fe(CN)_6^{4-}$	H_2O H_2O	25 25	60 60		$-40 \pm 68 \\ -14 \pm 3$		277 277	$\mu = 0.1 \text{ M (NaClO}_4)$ $\mu = 0.1 \text{ M (NaClO}_4)$
370	$H_2Asc + 2Fe(CN)_6^{3-} \rightarrow Asc + 2H^+ + 2Fe(CN)_6^{4-}$	H ₂ O	25 25	00	5	-14 ± 3		278	$\mu = 0.1 \text{ NI (NaClO4)}$
971		2-		95		-16.6 ± 0.5			$pH = 0.30, \mu = 1.0 \text{ N}$
972				95		-15.0 ± 1.0			$pH = 5.00, \mu = 1.0 \text{ N}$
973	$H_2Asc + 2Fe(H_2O)_6^{3+} \rightarrow Asc + 2H^+ + 2Fe(H_2O)_6^{2+}$	H ₂ O	25	96 90	5	$-16.3 \pm 0.4 \\ +14 \pm 2$		279	$\mu = 1.0 \text{ M}$
	$H_2Asc + 2Fe(H_2O)_6$ $Asc + 2H + 2Fe(H_2O)_6$ $H_2Asc + 2Fe(H_2O)_5(OH)^{2+} \rightarrow Asc + 2Fe(H_2O)_6^{2+}$	H ₂ O	25	90	5	$+4.6 \pm 0.7$		279	$\mu = 1.0 \text{ M}$ $\mu = 1.0 \text{ M}$
	K ₃ Fe(CN) ₆ + L-ascorbic acid	H_2O	35	190		-16 ± 1.5		280	
	$2[Fe(CN)_4(bpy)^- + QH_2 \rightarrow 2[Fe(CN)_4(bpy)^{2-} + Q + 2H^+]$	H_2O	25	100	5			281	
	$QH_2 = catechol$								$\mu = 1.0 \text{ M}$
977	[catechol] = 0.017 M					-18.3 ± 0.8			
978 979	[catechol] = 0.005 M QH ₂ = Bu ^t -catechol					-18.3 ± 2.5 -18.0 ± 1.3			
980	$QH_2 = Bu$ -catechor $QH_2 = Me-1,4$ -hydroquinone					-16.0 ± 1.3 -16.7 ± 1.1			
	Fe(phen) ₃ ²⁺ /Fe(phen) ₃ ³⁺ (self-exchange)							282	
981	as bisulfate salt	D_2O/D_2SO_4	3	210	8-10	-2.2 ± 0.1			0.3 mol kg ⁻¹
982	as perchlorate salt	CD ₃ CN	4	210	8-10	-5.9 ± 0.5			(bisulfate) 0.2 mol kg ⁻¹
	•								(perchlorate)
	Fe(CN) ₆ ^{3-/4-} (OS self-exchange)	H ₂ O	25 -8.5 to 10	150	4	7 1	-1.0 ± 0.2 (a)		$u = [E_0(an)]$
904	Fe(cp) ₂ /Fe(cp) ₂ ⁺ (self-exchange) peroxodisulfate oxidation of	CD_3CN	25	200	9	-7 ± 1		284 285	$\mu = [Fe(cp)_2]$
985	Fe ^{II} (CN) ₄ (ein) ²⁻	H_2O	~0	100	Ü	+4.6		200	
986	$Fe^{II}(CN)_4(phen)^{2-}$	H ₂ O		140		-2.1			
987	E H(CN) (M. 1. 1.)2-	H ₂ O/DMSO		140		-3.6			
988 989	$\mathrm{Fe^{II}(CN)_4(Me_2bsb)^{2-}} \ \mathrm{Fe^{II}(CN)_2(bpy)_2}$	H ₂ O H ₂ O		100 100		$-10.2 \\ -7.7$			
990	(~.)/2(~PJ/2	H ₂ O/DMSO		100		-8.3			
	$Fe(CN)_6^{3-/4-}$ (redox couple)	H_2O	25	200	5-6		-38.3 ± 1.0 (a)	286	$\mu = 1.00 \text{ M (KCl)}$
992 993							-36.6 ± 0.7 (a) -36.2 ± 0.8 (a)		$\mu = 0.51 \text{ M (KCl)}$
994							-36.2 ± 0.8 (a) -37.1 ± 1.3 (a)		$\mu = 0.28 \text{ M (KCl)}$ $\mu = 0.28 \text{ M (LiCl)}$
995							-34.4 ± 0.6 (a)		$\mu = 0.28 \text{ M (K}_2\text{SO}_4)$
	$Fe(H_2O)_6^{3+/2+}$ (redox couple)	H ₂ O	25	200	5-6		$+5.0 \pm 0.3$ (a)		$\mu = 0.28 \text{ M (CF}_3\text{SO}_3$
997 998	Fe(phen) ₃ ^{3+/2+} (redox couple)	H_2O	25	200	5-6		$+6.2 \pm 0.5$ (a) $+14.2 \pm 0.5$ (a)	280	$\mu = 1.00 \text{ M (KNO}_3)$ $\mu = 0.25 \text{ M (KNO}_3)$
999							$+14.2 \pm 0.3$ (a) $+16.3 \pm 0.2$ (a)		$\mu = 0.23 \text{ M (RNO3)}$ $\mu = 0.27 \text{ M (NaHSO)}$
000	$Fe(CN)_6^{3-/4-}$ (redox couple)	H ₂ O	25	130	8		$-38.7 \pm 0.5 \; \text{(a)}$		$\mu = 1.0 \text{ M (KNO}_3)$
001	Fe(phen)(CN) ₄ ^{1-/2-} (redox couple)	H ₂ O	25 25	130	8		-25.5 ± 0.8 (a)		$\mu = 1.0 \text{ M (KNO_3)}$
000	Fe(bpy)(CN ₄) $^{1-/2-}$ (redox couple)	H_2O H_2O	25 25	130 130	8		-25.7 ± 0.6 (a) -6.6 ± 0.5 (a)		$\mu = 1.0 \text{ M (KNO}_3)$ $\mu = 1.0 \text{ M (KNO}_3)$
	re(DDV) ₂ (C/N) ₂ ····· (redux colinie)		~~	-00	U				
003 004	$Fe(bpy)_2(CN)_2^{1+/0}$ (redox couple) $Fe(phen)_3^{3+/2+}$ (redox couple)	H_2O	25	130	8		$+6.7 \pm 1.0$ (a)	47	$\mu = 1.0 \text{ M (KNO}_3)$
003 004 005			25 25 25	130 130 130	8	-11.1 ± 0.4	$+6.7 \pm 1.0$ (a) $+8.0 \pm 0.3$ (a)		$\mu = 1.0 \text{ M (KNO}_3)$ $\mu = 1.0 \text{ M (KNO}_3)$ $\mu = 0.5 \text{ M}$

Table 1. (Continued)

no.	reaction	solvent		P, MPa		$\frac{\Delta V^{\dagger}}{\mathrm{cm}^{3}\mathrm{mol}^{-1}}$	ΔV , cm ³ mol ⁻¹ (method)	ref(s)	remarks
007	$\label{eq:Fe} \textbf{Fe}(\textbf{H}_2\textbf{O})_5\textbf{O}\textbf{H}^{2+}/\textbf{Fe}(\textbf{H}_2\textbf{O})_6{}^{2+} (\text{self-exchange})$	ctron-Tra H ₂ O		r Rea 130	ctions ((Continued) -0.8 ± 0.9		287	$\mu = 0.5 \text{ M}$
	Fe(CN) ₆ ^{3-/4-} (self-exchange)	H ₂ O	25	100	6			288	(HClO ₄ /NaClO ₄)
008	re(cry) (sen-exchange)	1120	20	100	U	$+22\pm2$		200	$\mu = 0.5 \text{ M}$
009						$+8\pm2$			at a Pt electrode
	$Co(RNH_2)_5X^{n+} + Fe(CN)_6^{4-} \rightarrow products$	H_2O		130	5			289	$\mu = 1.0 \text{ M (LiClO}_4)$
010	$R = Me, X = H_2O$		25			$+29.4 \pm 1.6$			pH = 3.9
011	$R = Me, X = OH^-$ $R = Et, X = H_2O$		25 25			$+32.9 \pm 1.3 +33.1 \pm 2.0$			pH = 7.3 pH = 3.9
012	$R = Et, X = H_2O$ $R = Et, X = OH^-$		35			$+30.6 \pm 2.8$			pH = 7.3
	$C_0(nta)(H_2O)_2^- + {}^{\bullet}CH_3 \rightarrow$	H_2O		150	4	$k_{\rm b}$: $+19 \pm 2$		290,291	p11 7.0
	$Co(nta)(H_2O)(CH_3)^- + H_2O$								
015	G (+)(T O) + O GT	** 0				$k_{\rm f}$: +6 ± 2.5			
016	$Co(nta)(H_2O)_2^- + O_2CH_3 \rightarrow Co(nta)(H_2O)(O_2CH_3)^- + H_2O$	H_2O	17	150	4	$+6.0 \pm 1.0$		290,291	
017	$(HCY)C_0(H_2O)_2^{2+} + O_2 \rightarrow$	H_2O	25	200	5	-4.7 ± 0.3	-22.6 ± 0.8 (a)	292	
01.	$(H_2O)Co(HCY)(O_2)^{2+} + H_2O$	1120	~0	200	Ü	0.0	22.0 ± 0.0 (a)	202	
018	$(H_2O)Co(HCY)(O_2)^{2+} + H_2O \rightarrow$	H_2O	25	200	5	$+17.9\pm0.5$		292	
010	$(HCY)C_0(H_2O)_2^{2+} + O_2$	11.0	95	150	-	100 10		202	1 0 M -II - 4 2
	$Co(NH_3)_5(HP_2O_7) + Fe(CN)_6^{4-} \rightarrow products$ $Co(NH_3)_5(P_2O_7)^- + Fe(CN)_6^{4-} \rightarrow products$	H_2O H_2O		150 150	5 5	$^{+36}\pm 3 \ _{+13}\pm 1$		293 293	$\mu = 1.0 \text{ M}, \text{ pH} = 4.3$ $\mu = 1.0 \text{ M}, \text{ pH} = 9.6$
	β -Co(NH ₃) ₅ (P ₃ O ₁₀) ²⁻ + Fe(CN) ₆ ⁴⁻ \rightarrow products	H ₂ O		150	5	$^{+13}\pm 1 \\ +13\pm 2$		293	$\mu = 1.0 \text{ M}, \text{ pH} = 3.0 $ $\mu = 1.0 \text{ M}, \text{ pH} = 8.8 $
	χ -Co(NH ₃) ₅ (P ₃ O ₁₀) ²⁻ + Fe(CN) ₆ ⁴⁻ \rightarrow products	H ₂ O		150	5	$+32\pm2$		293	$\mu = 1.0 \text{ M}, \text{ pH} = 9.0$
	$Co(NH_3)_5(HPO_3)^+ + Fe(CN)_6^{4-} \rightarrow products$	H_2O	41	150	5	$\mathbf{+22}\pm2$		293	$\mu = 1.0 \text{ M}, \text{ pH} = 9.0$
	$C_0(NH_3)_5(H_2PO_2)^{2+} + F_0(CN)_6^{4-} \rightarrow products$	H ₂ O		150	5	$+30 \pm 1$		293	$\mu = 1.0 \text{ M}, \text{ pH} = 4.3$
025	$Co(NH_3)_4(pzc)^{2+} + Fe(CN)_5H_2O^{3-} \rightleftharpoons$	H_2O	24	100	5	$+23.1 \pm 1.6$		294	$\mu = 0.10 \text{ M (NaClO}_4)$
026	$(NH_3)_4Co(\mu-pzc)Fe(CN)_5^- + H_2O$ $Co(en)_2(pzc)^{2+} + Fe(CN)_5H_2O^{3-} \rightleftharpoons$	H_2O	21	100	5	$+27.8\pm0.9$		294	$\mu = 0.10 \text{ M (NaClO}_4)$
020	$(en)_2Co(\mu-pzc)Fe(CN)_5^- + H_2O$	1120	~1	100	3	127.0 ± 0.5		204	$\mu = 0.10$ M (1400104)
027	$Co(NH_3)_5(HPO_4)^+ + Fe(CN)_6^{4-}$	H_2O	25	150	4	$+37\pm4$		295	$\mu = 1.0 \text{ M (LiClO}_4)$
028	$Co(NH_3)_5(H_2PO_4)^{2+} + Fe(CN)_6^{4-}$	H_2O		150	4	$+17\pm1$		295	$\mu = 1.0 \text{ M (LiClO}_4)$
	$Co(NH_3)_5(PO_4) + Fe(CN)_6^{4-}$	H_2O		150	4	$+44\pm 5$		295	$\mu = 1.0 \text{ M (LiClO}_4)$
	$C_0(NH_2Me)_5(PO_4) + F_0(CN)_6^{4-}$	H_2O		150	4	$+32 \pm 1$		295	$\mu = 1.0 \text{ M (LiClO}_4)$
	$Co(AT)(HPO_4)^+ + Fe(CN)_6^{4-}$ $Co(NH_3)_5(H_2O)^{3+} + Fe(CN)_6^{4-}$	H ₂ O glyc/H ₂ O		150	4 6	$+36 \pm 2 \\ +27.9 \pm 0.1$		295 296	$\mu = 1.0 \text{ M (LiClO}_4)$
	$Co(CyDTA)^{2-} + Fe(CN)_6^{3-} \rightarrow$	H ₂ O		120	4	$+27.9 \pm 0.1$ +6.5		297	pH < 10.8, μ = 0.5 M
000	$Co(CyDTA)^- + Fe(CN)_6^{4-}$	1120	~0	120	-	. 0.0		201	(NaClO ₄)
	$C_0(NH_3)_4(NH_2R)X^{(3-n)+} + F_0(CN)_6^{4-} \rightarrow$	H_2O	35	100	5			298	$\mu = 1.0 \text{ M}$
024	$Co^{2+} + 4NH_3 + NH_2R + X^{n-} + Fe(CN)_6^{3-}$ $P - H Y^{n-} - N - V$					⊥100 ± 1 1	-16 ± 2 (c)		
034	$R = H, X^{n-} = N_3^- $ $R = H, X^{n-} = Cl^-$					$+18.8 \pm 1.1 +25.9 \pm 3.1$			
036	$R = CH_3, X^{n-} = CI^-$					$+25.1 \pm 1.5$. ,		
037	$R = {}^{i}Bu$, $X^{n-} = Cl^{-}$					$+31.3\pm0.9$			
	Co(phen) ₃ ^{3+/2+} (redox couple)	H_2O		130	8		+21.1 (a)	268	$\mu = 0.1 \text{ M (KNO}_3)$
	$Co(bpy)_3^{3+/2+}$ (redox couple)	H ₂ O		130	8		+34.4 (a)	268	$\mu = 0.1 \text{ M (KNO}_3)$
	$Co(en)_3^{3+/2+}$ (redox couple) $Co(sep)^{3+/2+}$ (redox couple)	H_2O H_2O		130 200	8 6		$+34.0$ (a) $+13.5 \pm 0.4$ (a)	268	$\mu = 0.1 \text{ M (KNO}_3)$ $\mu = 1.0 \text{ M (KCl)}$
041	Co(sep) ^{3+/2+} (redox couple)	H ₂ O		200	6		$+13.9 \pm 0.4$ (a) $+13.9 \pm 0.5$ (a)		$\mu = 1.0 \text{ M (KCI)}$ $\mu = 0.28 \text{ M (KCI)}$
	Co(diamsar) ^{3+/2+} (redox couple)	H_2O		160	5	-10.4 ± 0.5	$+17.4 \pm 0.5$ (a)		$\mu = 0.14 \text{ M}$
	Co(diamsarH ₂) ^{5+/4+} (redox couple)	H_2O		160	5		$+19.5\pm0.8~\textrm{(a)}$		$\mu = 0.39 \text{ M}$
045	Co(en) ₃ ^{3+/2+} (self-exchange)	H_2O		210	5	-15.9 ± 1.0		300	$\mu = 0.5 \text{ M}$
	$Co([9]aneS_3)_2^{2+/3+}$ (self-exchange) $Co(sep)^{3+/2+}$ (self-exchange)	H ₂ O		200	11	-4.8 ± 0.2		301	$\mu = 0.5 \text{ M}$
047	Co(sep) ^{3,72+} (self-exchange) Co(phen) ₃ ^{3+/2+} (self-exchange)	H_2O H_2O		200 160	11 5	-6.4 ± 0.2		301 302	$\mu = 0.5 \text{ M}$ $\mu = 0.1 \text{ M (NaCl/NaNC)}$
048	anion = Cl	1120	20	100	3	-20.4 ± 0.5		302	$\mu = 0.1$ W (Nuclinary)
049	anion = NO_3^-					-19.7 ± 1.1			
050	$Co(terpy)_2^{3+} + V(H_2O)_6^{2+} \rightarrow Co(terpy)_2^{2+} + V(H_2O)_6^{3+}$	H_2O		100	3	-1.8 ± 0.7		303	$\mu = 1.0 \text{ M (NaClO}_4)$
	$(N_x)Co^{III}(\mu-L)Fe^{II}(CN)_5 \rightarrow Co^{2+} + xN + Fe^{III}(CN)_5L$	H_2O	24	100	5			294	$\mu = 0.1 \text{ M (NaClO}_4)$
051	$N_x = (NH_3)_4$, $L = pzc$					$-4.8 \pm 0.2 \\ -6.4 \pm 0.2$			nhataindused
052 053	$N_x = (en)_2$, $L = pzc$					-6.4 ± 0.2 -4.8 ± 0.2			photoinduced
054	$N_x = (NH_3)_5$, $L = pz$					-6.4 ± 0.2			
055	~ (%% - L -					-4.8 ± 0.2			photoinduced
056	$Co(nox)_3(BF)_2{}^+ + FeCp_2 \mathop{\rightleftarrows} Co(nox)_3(BF)_2 + FeCp_2{}^+$	CH_3CN	25	150	15-20	-6 ± 1		304	•
057		CTT CTT	۰.		4	-14 ± 2			0.1 M Bu ₄ NBF ₄
	$Co(dmg)_3(BF)_2^+ + FeCp_2 \rightleftharpoons Co(dmg)_3(BF)_2 + FeCp_2^+$	CH_3CN	25	150	15-20	-9 ± 1		304	OAMB NDE
059 1060		C ₆ H ₅ NO ₂				$-15 \pm 2 \\ -9 \pm 1$			0.1 M Bu ₄ NBF ₄
061		Me ₂ CO				-12 ± 1			
	$Co(dmg)_3(BF)_2^+ + FeCp_2 \rightleftharpoons Co(dmg)_3(BF)_2 + FeCp_2^+$	CH ₃ CN	25	150	15-20	-10 ± 1		304	
063						-15 ± 2			0.1 M Bu ₄ NBF ₄
064	$Co(dmg)_3(BF)_2^+ + Fe(CH_3Cp)_2 \rightleftharpoons$	CH_3CN	25	150	15-20	-11 ± 1		304	
	$Co(dmg)_3(BC_6H_5)_2 + Fe(CH_3Cp)_2^+$ $Co(dmg)_3(BC_4H_9)_2^+ + Fe(CH_3Cp)_2 \rightleftharpoons$	CH CM	95	150	15 00	_11 + 1		204	
OG F	COMMISSIONATION: ± PER Hal Dis ←	CH ₃ CN	۷5	190	15-20	-11 ± 1		304	
065									
.065	$Co(dmg)_3(BC_4H_9)_2 + Fe(CH_3Cp)_2^+$		25	150	15 - 20			304	
.065			25	150	15-20			304	
066	$Co(dmg)_3(BC_4H_9)_2 + Fe(CH_3Cp)_2^+$ $Co(dmg)_3(BC_6H_5)_2^+ + Fe(CH_3Cp)_2 \rightleftharpoons$	CH ₃ CN		150	15-20	-4 ± 1		304	
	$Co(dmg)_3(BC_4H_9)_2 + Fe(CH_3Cp)_2^+$ $Co(dmg)_3(BC_6H_5)_2^+ + Fe(CH_3Cp)_2 \rightleftharpoons$	CH ₃ CN C ₆ H ₅ NO ₂ Me ₂ CO		150	15-20	$egin{array}{c} -4\pm 1 \ -5\pm 2 \ -12\pm 1 \end{array}$		304	

Table 1. (Continued)

no.	reaction	solvent	<i>T</i> , °C	P, MPa	no. of data	${\Delta V^{\dagger}, \atop { m cm}^3 { m mol}^{-1}}$	$\Delta ar{V}$, cm 3 mol $^{-1}$ (method)	ref(s)	remarks
1070	$Co(nox)_3(BC_6H_5)_2^+ + Fe(CH_3Cp)_2 \rightleftharpoons$	Electron-Tr CH ₃ CN	ansfer 1 25			ontinued) -9 ± 1		304	
1071	$Co(nox)_3(BC_6H_5)_2 + Fe(CH_3Cp)_2^+$ $Co(dpg)_3(BC_6H_5)_2^+ + Fe(CH_3Cp)_2 \rightleftharpoons$ $Co(dpg)_3(BC_6H_5)_2 + Fe(CH_3Cp)_2^+$	CH ₃ CN	25	150	15-20	-14 ± 1		304	
1072	$Co(dmg)_3(BF)_2^+ + FeCp_2 \rightleftharpoons Co(dmg)_3(BF)_2 + FeCp_2^+$	CH ₃ CN	25	150	15-20	-13 ± 2		304	
1073	$(en)_2Co^{III}(\mu-NH_2,O_2^{(-)})Co^{III}(en)_2^{4+} + TMPNO \rightarrow (en)_2Co^{III}(\mu-NH_2,O_2^{(2-)})Co^{III}(en)_2^{3+} + TMPNO^+$	H_2O	15	200	9	$+0.2\pm0.5$		305	$\mu = 0.1 \text{ M (NaClO}_4)$
	$\begin{array}{c} (en)_2Co^{III}(pzc)Fe^{II}(CN)_5{}^- \rightarrow \\ Co^{2+} + 2en + Fe^{III}(CN)_5(pzc)^{3-} \end{array}$	H ₂ O	25	70	5	$-1.4 \pm 1.3 +24$		306	$\mu = 0.5 \text{ M (NaClO}_4)$
1076 1077 1078 1079	$\begin{array}{l} C_0{}^{III}(NH_3)_5pz^{3+} + Fe^{II}(CN)_5(H_2O)^{3-} \rightleftarrows \\ (NH_3)_5Co^{III}(\textit{u-pz})Fe^{II}(CN)_5 \to \\ Co^{2+} + 5NH_3 + Fe^{III}(CN)_5(pz)^{2-} \end{array}$	60% MeOH H ₂ O	25 25	70 70	3 10	+7 $+38 \pm 1$ $+36 \pm 1$ $+37 \pm 1$		307	$\begin{aligned} \text{pH} &= 5, \mu = 0.10 \text{ M (NaClO_4)} \\ \text{pH} &= 5, \mu = 0.10 \text{ M (NaCl)} \\ \text{pH} &= 5, \mu = 0.10 \text{ M} \\ \text{((C_2H_5)_4NClO_4)} \end{aligned}$
1080	60 Co ^{III} (edta) [−] + Co ^{II} (Hedta)OH ₂ [−] \rightleftharpoons 60 Co ^{II} (Hedta)OH ₂ [−] + Co ^{II} (edta) [−]	H_2O	85	230	7	-3.2 ± 0.3		155	$pH = 2.0, \mu = 0.5 \text{ M}$
1081 1082 1083 1084 1085 1086	$\begin{split} Ni^{II}L(ClO_4)_2 + 2X^- + HO_2 & \stackrel{\bullet}{\longrightarrow} Ni^{III}LX_2 \\ X &= SO_4{}^2 - \\ X &= H_2PO_4 - \\ X &= H_2PO_4 - \\ \end{split}$	H ₂ O	25	150	4	$ \begin{array}{r} -0.3 \\ -1.3 \\ -5.9 \\ -6.2 \\ -12.4 \\ -10.7 \end{array} $		308	[X] = 0.02 M [X] = 0.05 M [X] = 0.70 M [X] = 1.50 M [X] = 0.05 M [X] = 0.70 M
1089	$\begin{array}{c} X = H_2PO_4^- \\ Ni(cyclam)^{2+} + {}^{\circ}CH_3 \rightleftharpoons (cyclam)(H_2O)Ni^{III} {-}CH_3^{2+} \\ (phen)_2Cu^I + O_2 \rightarrow (phen)_2Cu^II + O_2^- \\ (Cu^I(C_6H_4(CH)_2N_2)NH((CH_2)_2)_2)_2 + O_2 \rightarrow \\ (Cu^{II})_2(O_2)(C_6H_4(CH)_2N_2)NH((CH_2)_2)_2 \end{array}$	H_2O H_2O MeOH	25 17 25	150 150 150	4 3	$-9.6 +24.4 \pm 1.0 -22 \pm 2 -21 \pm 1$	$+20 \pm 1.0$ (a, c)	309 310 311	[X] = 2.0 M
1091	$\text{Cu}(\text{H}_2\text{O}_2)(\text{C}_6\text{H}_4\text{(CH}_2\text{N}_2)\text{IVII}(\text{CH}_2)_{2/2})$ $\text{Cu}(\text{H}_2\text{O})_m^{2+} + {}^{\bullet}\text{OH} \rightarrow \text{Cu}(\text{III})_{aq} + \text{OH}^-$ $\text{Cu}(\text{dmp})_2^{+/2+} \text{ (self-exchange)}$	H_2O	25	150	3	$+0.7\pm0.2$		312 313	
1092		CD ₃ CN	38	200		-3.4 ± 0.6			$\mu = 0.094 \text{ mol kg}^{-1}$ (CF ₃ SO ₃ K)
1093	G W(G) GI VI) A	(CD ₃) ₂ CO	29.5	200		-7.8 ± 0.6		014	$\mu = 0.121 \text{ mol kg}^{-1}$ (CF ₃ SO ₃ K)
1095 1096 1097 1098	Cu ^{III} (GlyGlyHis), formation Cu ^{III} (GlyGlyHis), decomposition Ld Ru ^{III} Ru(en) ₃ ^{3+/2+} (redox couple) Ru(NH ₃) ₆ ^{3+/2+} (redox couple)	H_2O H_2O D_2O H_2O H_2O	25 25 24 25 25	150 150 150 130 130	6 8 8	-5.1 ± 1 +8 to +14 -7.5 ± 0.2	+27.0 (b) +30.3 (b)	314 314 315 268 268	$\mu = 0.1 \text{ M (KNO}_3)$ $\mu = 0.1 \text{ M (KNO}_3)$
1100 1101	$\begin{split} &Ru(NH_3)_6^{3+ 2^+ } \ (redox\ couple) \\ &Ru(H_2O)_6^{3+ 2^+ } \ (redox\ couple) \\ &Ru(H_2O)_6^{3+ 2^+ } \ (redox\ couple) \\ &Ru^o(cp)_2 + Ru^{II}(cp)_2Br\ (IS\ self-exchange) \\ &Ru(hfac)_3^{-} + Ru(hfac)_3^{0} \rightleftharpoons Ru(hfac)_3^{0} + \\ &Ru(hfac)_3^{-} \end{split}$	H ₂ O H ₂ O H ₂ O CD ₃ CN	25 25 25 34–55	130 130 130 200 200	8 8 8 10 8	-3.0 ± 0.2	+29.8 (b) +12.5 (b) +13.0 (b)	268 268 268 316 317	$\mu = 0.1 \text{ M (HClO}_4)$ $\mu = 0.1 \text{ M (KNO}_3)$ $\mu = 0.1 \text{ M (HClO}_4)$
1103 1104 1105 1106	Ru(cp) ₂ /Ru(cp) ₂ I(CF ₃ SO ₃)	(CD ₃) ₂ C CD ₃ CN CDCl ₃ CD ₃ OD	25 26 26 25	200		$\begin{array}{c} -6.1 \pm 0.3 \\ -5.5 \pm 0.1 \\ -8.1 \pm 0.2 \\ -5.8 \pm 0.3 \end{array}$		318	
1107 1108 1109 1110	Ru(cp) ₂ /Ru(cp) ₂ Br(PF ₆)	CD ₃ CN CD ₃ CN CD ₃ NO ₂ CD ₃ NO ₂	-2 -14 5 8	200	11 12 11 12	$\begin{array}{c} -7.7 \pm 1.1 \\ -4.8 \pm 1.0 \\ -4.0 \pm 0.9 \\ -3.5 \pm 1.0 \end{array}$		318	
1111 1112 1113 1114 1115 1116 1117 1118 1119	$H_2Asc + Ru(CN)_6^{3-} \rightleftharpoons H_2Asc^{*+} + Ru(CN)_6^{4-}$	$\begin{array}{c} CD_3CN \\ CD_3CN \\ CD_3CN \\ CD_3CN \\ CD_3CN \\ CG_3CN \\ C_6D_5NO_2 \\ C_6D_5NO_2 \\ C_6D_5NO_2 \\ C_9D_5NO_2 \\ CH_2O \end{array}$	33 41 42 44 55 34 33 40 42 25	200 200 200 200 200 200 200 200 150 200 60	8 9 9	$\begin{array}{c} -2.9 \pm 0.1 \\ -2.7 \pm 0.4 \\ -2.9 \pm 0.1 \\ -3.1 \pm 0.2 \\ -3.3 \pm 0.2 \\ -2.3 \pm 0.7 \\ -3.1 \pm 0.6 \\ -2.8 \pm 0.4 \\ -3.9 \pm 0.5 \\ -26 \pm 18 \end{array}$		277	$\mu = 0.1 \text{ M (NaClO}_4)$
1121 1122	$H_2ASc^+ + Ru(CN)_6^{3-} \rightleftharpoons H_3c^* + Ru(CN)_6^{4-}$ $H_2ASc^+ + Su(CN)_6^{3-} \rightleftharpoons H_2ASc^* + Su(CN)_6^{4-}$ $H_2ASc^- + Os(CN)_6^{3-} \rightleftharpoons H_2ASc^* + Os(CN)_6^{4-}$ $H_3C^- + Os(CN)_6^{3-} \rightleftharpoons H_3C^* + Os(CN)_6^{4-}$ $Os(cp)_2/Os(cp)_2I(CF_3SO_3^-)$	H ₂ O H ₂ O H ₂ O CD ₃ CN	25 25 25 25	60 60 60 200	7 7 7	-9 ± 3 -90 ± 75 -10 ± 3 -7.6 ± 0.9		277 277 277 277 318	$\mu = 0.1 \text{ M (NaClO}_4)$ $\mu = 0.1 \text{ M (NaClO}_4)$ $\mu = 0.1 \text{ M (NaClO}_4)$ $\mu = 0.1 \text{ M (NaClO}_4)$
1125 1126 1127 1128 1129 1130 1131	$IrCl_6{}^{2-} + QH_2 \rightarrow IrCl_6{}^{3-} + QH_2{}^+$	CD ₃ NO ₂ (CD ₃) ₂ CO (CD ₃) ₂ CO (CD ₃) ₂ CO CDCl ₃ CDCl ₃ (CD ₃) ₂ SO H ₂ O	-5 10 20 20 30 41 42	200 150 150 170 170 170 170 170	14 13 7 16 11	$\begin{array}{c} -4.7 \pm 1.0 \\ +9.7 \pm 0.8 \\ +11.0 \pm 1.0 \\ -2.7 \pm 0.7 \\ -7.0 \pm 0.8 \\ -5.0 \pm 1.0 \\ +0.07 \pm 0.2 \end{array}$		319	
1132 1133	$QH_2 = catechol$	-	25 25			$-30.9 \pm 1.3 \\ -24.5 \pm 0.9$			$\mathrm{pH} = 0, \mu = 1.0 \; \mathrm{M}$ $\mathrm{pH} = 2, \mu = 1.0 \; \mathrm{M}$

Table 1. (Continued)

no.	reaction	solvent	<i>T</i> , °C	<i>P</i> , MPa	no. of data	${\Delta V^{\! +}, top cm^3 mol^{-1}}$	$\Delta ar{V}$, cm 3 mol $^{-1}$ (method)	ref(s)	remarks
1134	$\mathrm{QH}_2 = 4$ -tert-butylcatechol	ron-Trans	sfer R	eaction	ns (Cont	inued) -28.0 ± 3.6			pH = 0 , , = 1 0 M
1134	$QH_2 = 3.4$ -dihydroxybenzoic acid		25			-26.0 ± 3.0 -30.3 ± 1.3			$pH = 0, \mu = 1.0 M$ $pH = 0, \mu = 1.0 M$
1136	$QH_2 = 2,3$ -dihydroxybenzoic acid		25			-26.0 ± 0.2			$pH = 0, \mu = 1.0 M$
1137	$QH_2 = adrenalin$		25			-29.2 ± 3.6			$pH = 0$, $\mu = 1.0 M$
1138	$QH_2 = 4$ -tert-butylcatechol		10			-24.9 ± 1.1			$pH = 0, \mu = 1.0 M$
1139 1140	$QH_2 = 4$ -tert-butylcatechol $QH_2 = 4$ -tert-butylcatechol		10 10			$-21.2 \pm 0.7 \\ -23.5 \pm 1.2$			$pH = 2, \mu = 1.0 M$ $pH = 0, \mu = 1.0 M$
1141	$QH_2 = 4$ -tert-butylcatechol		10			-23.6 ± 0.7			$pH = 2, \mu = 0.10 M$
1142	$QH_2 = adrenalin$		10			-25.9 ± 1.3			$pH = 0, \mu = 0.10 M$
1143	$QH_2 = L$ -dopa		10			-25.1 ± 1.6			$pH = 0, \mu = 0.10 M$
1144	$QH_2 = 4$ -tert-butylcatechol		2			-20.0 ± 0.6			$pH = 2, \mu = 0.10 M$
	0.5 M CoSO ₄ + 0.1 M K ₂ SO ₄	depositio H ₂ O	n/Ele 23	ctroche 170	emical R	Reactions		320	
1145	+ 0.01 M NaClO ₄	1120	20	170		$+12.3\pm0.2$		020	
1146	+ 0.01 M KCl					$+12.4\pm0.3$			
1147	+ 0.1 M KCl					$+6.0 \pm 0.2$			
1148 1149	+ 1 M KCl + 2 M KCl					$+5.9 \pm 0.2 \\ +6.0 \pm 0.4$			
1150	+ 3.5 M KCl					$+6.0 \pm 0.4$			
1151	$+$ 0.01 M KCl, 10^{-5} M KSCN					$+12.0\pm0.2$			
1152	+ 0.01 M KCl, 0.01 M KSCN		00	170		0		000	
1153	0.5 M NiSO ₄ + 0.1 M K ₂ SO ₄ + 0.01 M KCl	H_2O	23	170		$+13.3\pm0.5$		320	
1154	+ 0.01 M KCl + 0.01 M KCl, 0.01 M 2-propane sulfonate					$+13.3 \pm 0.3 +14.6 \pm 0.2$			
1155	+ 0.01 M KCl, 0.05 M 2-propane sulfonate					$+13.8 \pm 0.2$			
1156	+ 0.01 M KCl, 0.1 M 2-propane sulfonate					$+13.6\pm0.4$			
1157	+ 0.01 M KCl, 0.01 M 2-naphthalene sulfonate					$+5.3 \pm 0.2$			
1158 1159	+ 0.01 M KCl, 0.05 M 2-naphthalene sulfonate + 0.01 M KCl, 0.02M 1,5-naphthalene sulfonate					$+5.0 \pm 0.2 \\ +7.4 \pm 0.1$			
1160	+ 0.01 M KCl, 0.1 M 1,5-naphthalene sulfonate					$+6.9 \pm 0.3$			
	$0.5 \text{ M NiSO}_4 + 0.1 \text{ M K}_2 \text{SO}_4$	H_2O	25	170				321	
1161	+ 0.01 M KCl					$+13.4 \pm 0.4$			
1162	+ 0.01 M KCl, KSCN additive 0.01 M AgNO ₃ + 0.1 M KNO ₃	H_2O	23	170		0		320	
1163	+ 0.5 M KCN	1120	23	170		0		320	
1164	+ 5 M NH ₃					$+20.3\pm0.4$			
1165	+ 10 M NH ₃					$+20.9 \pm 0.5$			
1166 1167	+ 5 M NH ₃ , 0.05 M KSCN + 5 M NH ₃ , 0.1 M KSCN					$+21.1 \pm 0.4 \\ +20.0 \pm 0.5$			
1107		sis. Hom	olvsis	s. and F	Iomolyt	ic Fission			
4400	heterolysis reactions:				20111019			222	0.734.03.030.)
1168 1169	$(H_2O)_5Cr(i\text{-PrOH}) + H_2O \rightarrow \text{products}$ $(H_2O)_5Cr(MeOH) + H_2O \rightarrow \text{products}$	H_2O H_2O	25 25	200 200		$+11.5 \pm 0.8$		322 322	$\mu = 0.5 \text{ M (NaClO4)}$
1170	$(H_2O)_5$ Cr(MeOH) $+$ $H_2O \rightarrow$ products $([15]aneN_4)(H_2O)Cr(MeOH) + H_2O \rightarrow$ products	H ₂ O	25 25	200		$+9.3 \pm 0.7 \\ +6.9 \pm 0.4$		322	$\mu = 0.5 \text{ M (NaClO}_4)$ $\mu = 0.5 \text{ M (NaClO}_4)$
1171	([15]aneN ₄)(H ₂ O)Cr(i-PrOH) + H ₂ O \rightarrow products	H ₂ O	25	200		$+10.4 \pm 0.3$		322	$\mu = 0.5 \text{ M (NaClO4)}$
1172	cis -(nta)(H ₂ O)Cr(i-PrOH) + H ₂ O \rightarrow products	H_2O	25	200		$+10.2\pm1.0$		322	$\mu = 0.5 \text{ M} \text{ (NaClO}_4)$
	$(H_2O)_5CrC(CH_3)_2OH^{2+} + H_2O \rightarrow products$	H_2O	25	200				323	$\mu = 0.5 \text{ M (NaClO}_4)$
1173	anion: CF ₃ COO ⁻					$+14.2\pm0.4$			pH = 3.0
1174	SO ₄ ²⁻					$+11.2 \pm 0.1$ $+11.2 \pm 0.4$			pH = 3.0
1175	ClCH ₂ COO ⁻					$+19.5\pm1.1$			pH = 3.8
1176	CH ₃ CH(OH)COO ⁻					$+9.1 \pm 0.3$			pH = 3.5
1177 1178	HCOO- HOCH ₂ COO-					$+10.8 \pm 0.3 +13.5 \pm 0.5$			pH = 4.5 pH = 4.5
1179	CH ₃ COO ⁻					$+15.0 \pm 0.0$ $+15.1 \pm 0.8$			pH = 5.3
1180	CH ₃ CH ₂ COO					$+14.1\pm0.6$			pH = 5.4
1181	H ₂ PO ₄ -	11.0	0.5	50		$+15.5 \pm 0.3$		004	pH = 3.2
	$LCr-R^{2+} + H_2O \rightarrow LCr-OH_2^{3+} + RH$ $L = H_2O, R = CMe_2OH$	H_2O	25	50				324	$[CH_3COO^-] =$
1182						$+15.1\pm0.8$			0.015 M
1183						$+11.3\pm0.6$			0.31 M
1184						$+14.2 \pm 0.5$			0.0032 M
1185 1186						$+13.2 \pm 0.9 \\ +15.9 \pm 0.3$			0.0085 M 0.0069 M
1187						$+14.7 \pm 0.3$			0.0063 M
1188						$+12.5\pm0.8$			0.027 M
1189						$+9.2\pm0.2$			0.16 M
1190	$L = H_2O$, $R = CH_2OH$					$+10.7\pm0.5$			0.015 M
1190						$+6.1 \pm 0.4$			0.31 M
1192						$+11.2 \pm 0.2$			0.038 M
1193						$+10.0\pm0.6$			0.076 M
1194						$+8.9 \pm 0.4$			0.17 M
1195 1196	$L = nta$, $R = CMe_2OH$					$+6.4 \pm 0.3 \\ +4.6 \pm 0.3$			0.26 M 0.017 M
1196	L ma, w – omegon					$^{+4.0}\pm0.5$ $^{+4.8}\pm0.5$			0.017 M 0.27 M
1198	$L = nta, R = CH_2OH$					$+7.2\pm0.7$			0.024 M
1199	I MEL IN D. CM ON					$+7.4 \pm 0.7$			0.27 M
1200 1201	$L = [15]aneN_4$, $R = CMe_2OH$ $L = [15]aneN_4$, $R = CH_2OH$					$+14.1 \pm 1.4 +14.0 \pm 0.7$			0.028 M 0.014 M
1201	L [10]anci 4, it — Origoni					111.0 ± 0.7			0.017 111

Table 1. (Continued)

no.	reaction	solvent	T, °C	P, MPa	no. of data	${\Delta V^{\dagger}, \atop { m cm}^3 { m mol}^{-1}}$	ΔV , cm ³ mol ⁻¹ (method)	ref(s)	remarks
		omolysis, and H	[omo]	ytic I	ission	(Continued))		
	homolysis reactions: R-B ₁₂							325	
202	R = ado	egly	100	150	6	$+18.5\pm1.5$		020	
203	R = ado	H_2O	100	150	5	-2.0 ± 0.5			
204	R = neopentyl	egly	40	150	5	$+7.9 \pm 1.2$			
205	$R = methyl$ $R-B_{12}$	egly	110	100 150	4	$+17.0 \pm 2.2$		325	
206	$R = Pr^{i}$	70% egly	37	150	5	$+0.2\pm0.3$		323	
207	$R = Pr^i$	95% egly	37	150	3	-1.2 ± 0.3			
208	R = ado	70% egly	100	150		+14			
000	$AdoB_{12}$	H_2O	107	150	6	1100 1 00		326	
209 210		20% 1-propanol	107			$+19.0 \pm 0.2 \\ +17.7 \pm 0.2$			
211		50% 1-propanol				$+17.7 \pm 0.2$ $+16.7 \pm 0.4$			
212		80% 1-propanol				$+17.7 \pm 0.5$			
	NpB_{12}	H_2O	41	150	6			326	
213		2007.4				$+16.4 \pm 0.1$			
214		20% 1-propanol				$+18.8 \pm 0.1$			
215 216		35% 1-propanol 50% 1-propanol				$+21.4 \pm 0.1$ $+23.1 \pm 0.1$		328	
217		65% 1-propanol				$+28.0 \pm 0.1$		520	
218		80% 1-propanol				$+29.9\pm0.1$			
219	MeB_{12}	H_2O		150	6	$+18.2\pm0.2$		326	
220	[AdoCbi]+OH-	H ₂ O	15	150	6	$+18.5 \pm 0.2$		326	
221	ⁱ PrB ₁₂	H_2O	30	150	6	$+1.2 \pm 0.8$		326	
222		20% 1-propanol				$+1.2 \pm 0.8 +1.3 \pm 1.3$			
223		40% 1-propanol				$+0.1 \pm 0.1$			
224		50% 1-propanol				-0.6 ± 1.0			
225		60% 1-propanol				-0.1 ± 0.7			
226		80% 1-propanol				-0.2 ± 0.9			
27	homolytic fission reactions:	90% 1-propanol				0.0 ± 0.3			
	nomory de lission reactions.	wt %							
	PhCH ₂ Co(Hdmg) ₂ PCy ₃	H ₂ O/1-propanol	55	150	5 - 7	$+24.4\pm1.7$		327	
229		10:90				$+14.8 \pm 1.2$			
230		40:60 50:50				$+12.0 \pm 1.3$			
232		60:40				$+9.7 \pm 0.6$			
	C ₆ H ₅ CH ₂ C ₀ (Hdmg) ₂ L			150				328	
233	$L = PMe_3$	$C_6H_5CH_3$	108			$+32.6\pm0.6$			
234	$L = PEt_3$	C ₆ H ₅ CH ₃	93			$+23.1 \pm 0.3$			
235 236	$L = PBu_3$ $L = PBu_3$	C ₆ H ₅ CH ₃	56 83			$+22.5 \pm 0.2$			
237	$L = PBu_3$ $L = PBu_3$	C ₆ H ₅ CH ₃ CH ₃ OH	80			$+21.8 \pm 1.2 +12.4 \pm 0.6$			
238	$L = PPh_3$	$C_6H_5CH_3$	49			$+21.4 \pm 0.5$			
239	$L = PPh_3$	$C_6H_5CH_3$	68			$+20.2\pm0.4$			
240	$L = PCy_3$	$C_6H_5CH_3$	49			$+24.7\pm0.8$			
241	L = pyridine	C ₆ H ₅ CH ₃	92			$+32.2 \pm 1.1$			
242	L = CNpy $C_4H_9Co(salen)L$	$C_6H_5CH_3$	79	150		$+29.6 \pm 0.3$		328	
243	L = CNpy	acetone	48	130		$+23.1 \pm 0.4$		320	
244	L = CNpy	iodoethane	48			$+17.0 \pm 0.7$			
245	L = CNpy	$C_6H_5CH_3$	48			$+20.8\pm1.3$			
246	L = CNpy	C ₆ H ₅ CH ₃	69			$+20.0 \pm 3.3$			
247	L = pyridine	C ₆ H ₅ CH ₃	69			$+34.3 \pm 3.2$			
248 249	$L = PCy_3$ $L = PCy_3$	$C_6H_5CH_3$ $C_6H_5CH_3$	48 56			$+25.5 \pm 1.8$ $+25.1 \pm 1.5$			
		hemical and Ph		hveic	al Proc				
	photochemical reactions:		- J. J.	, 510					
	$Cr(CO)_4(phen) + PMe_3 \rightarrow Cr(CO)_3(phen)(PMe_3) + CO$	$C_6H_5CH_3$	25	160	4			329	
250						$+6.8 \pm 1.3$			$\lambda_{\rm irr} = 366 \text{ nm}$
251						$+4.7 \pm 1.0$			$\lambda_{\rm irr} = 403 \text{ nm}$
252 253						$-0.2 \pm 0.8 \\ +1.3 \pm 0.6$			$\lambda_{irr} = 436 \text{ nm}$ $\lambda_{irr} = 486 \text{ nm}$
254						$+1.9 \pm 0.0$			$\lambda_{\rm irr} = 466 \text{ nm}$ $\lambda_{\rm irr} = 546 \text{ nm}$
-	$Cr(CO)_4(phen) + PPh_3 \rightarrow Cr(CO)_3(phen)(PPh_3) + CO$	$C_6H_5CH_3$	25	160	4	***		329	
55	• "					$+6.4\pm0.3$			$\lambda_{\rm irr} = 366~{ m nm}$
256						$+5.0 \pm 0.8$			$\lambda_{\rm irr} = 403 \text{ nm}$
257						$+2.9 \pm 0.1$			$\lambda_{\rm irr} = 436 \text{ nm}$
258 259						$+2.8 \pm 0.7 +2.7 \pm 0.8$			$\lambda_{\rm irr} = 486 \ { m nm}$ $\lambda_{\rm irr} = 546 \ { m nm}$
~00	cis-Cr(cyclam)(NH ₃) ₂ ³⁺ + H ₂ O →	$C_6H_5CH_3$	25	160	4	· w. / ± 0.0		329	WIII OTO IIII
	cisCr(cyclam)(NH ₃)(H ₂ O) ³⁺ + NH ₃	-	-	-				-	
260						+0.6			$\lambda_{\rm irr} = 646 \text{ nm}, \text{ pH}$
261						$+0.6\pm0.4$			3 (HNO ₃) $\lambda_{irr} = 476.5 \text{ nm, p}$
~ U I						10.0 ± 0.4			$\lambda_{\text{irr}} = 476.3 \text{ HIII, pl}$ 3 (HNO ₃)
	$Cr(CO)_4(phen) + PEt_3 \rightarrow Cr(CO)_3(PEt_3)(phen) + CO$	$C_6H_5CH_3$	25	200	9			331	
262 263	$Cr(CO)_4(phen) + PEt_3 \rightarrow Cr(CO)_3(PEt_3)(phen) + CO$	C ₆ H ₅ CH ₃	25	200	9	$^{+9.6}\pm1.6 \ _{+2.7}\pm0.3$		331	

Table 1. (Continued)

no.	reaction	solvent			no. of data	ΔV^{\dagger} , cm 3 mol $^{-1}$	ΔV , cm ³ mol ⁻¹ (method)	ref(s)	remarks
	Photochemical a	nd Photophysic				ontinued)		220	1 - 212
1264 1265 1266 1267 1268 1269	$Cr(CO)_6 + pip \rightarrow Cr(CO)_5(pip) + CO$	n-pentane n-hexane n-heptane n-octane n-decane n-dodecane		200	9	$\begin{array}{c} +9.1 \pm 1.3 \\ +7.0 \pm 0.7 \\ +9.3 \pm 0.6 \\ +7.0 \pm 1.0 \\ +7.3 \pm 0.7 \\ +7.6 \pm 0.5 \end{array}$		332	$\lambda_{\rm irr} = 313~{ m nm}$
1270 1271	$Cr(CO)_6 + L \rightarrow Cr(CO)_5(L) + CO$ L = py	n-heptane	25	200	9	$+9.2 \pm 0.3$ $+9.5 \pm 1.0$		332	$\lambda_{irr}=313~nm$
	$L = CH_3CN$ $L = CH_3CN$ $CpFe(CO)_2(COCH_3) + P(OMe)_3 - CpFe(CO)_2CH_3 (k_1)$ $CpFe(CO)(COCH_3)(P(OMe)_3) (k_1)$	n-heptane CH ₃ CN n-heptane	22	80	2	$+9.3 \pm 1.0 +5.0 \pm 0.6 -39 \pm 8$	-16.4 ± 1.6 (b)	333	
1276 1277	$Mo(CO)_4(phen) + PEt_3 \rightarrow Mo(CO)_3(PEt_3)(phen) + CO$ LF MLCT	C ₆ H ₅ CH ₃	25	200	4 9	$+5.7 \pm 0.2 \\ -13.3 \pm 1.2$		331	
1279	$\begin{array}{l} Mo(CO)_6 + py \longrightarrow Mo(CO)_5(py) + CO \\ Ru(bpy)_3^{2+} + Cl^- + CH_3CN \longrightarrow Ru(bpy)_2(CH_3CN)Cl^+ + bpy \end{array}$	<i>n</i> -heptane CH₃CN	25 15	200 300	9	$+14.0 \pm 1.2$ $+12$		332 334	$\lambda_{\mathrm{irr}} = 313 \ \mathrm{nm}$
1280 1281	$[Ru(bpy)_3](PF_6)_2 + 2CH_3CN \rightarrow$ $[Ru(bpy)_3](PF_6)_2 + 2CH_3CN \rightarrow$	CH ₃ CN	25 60	300	6 6 6	+14 +22		334	
1282 1283	$[Ru(bpy)_2(CH_3CN)_2](PF_6)_2 + bpy$ $[Ru(bpy)_3]^{2+} + Cl^- + H_2O \rightarrow [Ru(bpy)_2(H_2O)]Cl^+ + bpy$	H ₂ O	25 60 60	300	6	+8 +10		334	
1284 1285 1286	$[Ru(bpy)_3]Cl_2 + CH_2Cl_2 \rightarrow$	CH ₂ Cl ₂	25	300	2	+9.5 +12 +17		334	9 M LiCl
	$[Ru(bpy)_2(CH_2Cl_2)Cl]Cl + bpy$ $[Ru(phen)_3 Cl_2 + CH_3CN \rightarrow$ $[Ru(phen)_2(CH_3CN)Cl]Cl + phen$	CH ₃ CN		300	2			334	
1287 1288 1289			15 25 60			$^{+9}_{+18}_{+27}$			
1290 1291	$W(CO)_4(phen) + PEt_3 \rightarrow W(CO)_3(PEt_3)(phen) + CO$ LF MLCT	C ₆ H ₅ CH ₃	25		9	$+8.1 \pm 0.5 \\ -12.0 \pm 0.7$		331	
1292 1293 1294 1295	$ W(CO)_6 + py \rightarrow W(CO)_5(py) + CO $ $W(CO)_5(4 - X - py) + P(OEt)_3 \rightarrow W(CO)_5(P(OEt)_3) + 4 - X - py $ $ X = H $ $ X = NC $ $ X = OAc $	<i>n</i> -heptane C ₆ H ₅ CH ₃	25 25	200 200	9	$+8.8 \pm 0.4$ $+5.7 \pm 0.3$ $+6.3$ $+9.9$		332 335	$\lambda_{\rm irr} = 313 \ { m nm}$ $\lambda_{\rm irr} = 436 \ { m nm}$ (LF
1295	X - OAC $W(CO)_4(phen) + PEt_3 \rightarrow$ cis - $W(CO)_3(phen)PEt_3 + CO$ LF	$C_6H_5CH_3$	25	200	9	+9.9 +8.1 ± 0.5		336	$\lambda_{\rm irr} = 366 \ {\rm nm}$
1297	MLCT $(CO)_5ReMn(CO)_3(\alpha\text{-diimine}) + CH_2Cl_2 \rightarrow$ $Re(CO)_5Cl + Mn(CO)_3(\alpha\text{-diimine})Cl$	CH ₂ Cl ₂	25	150	5	$-12.0 \pm 0.7 + 17.2 \pm 1.3$		337	$\lambda_{\rm irr} = 546 \text{ nm}$ $\lambda_{\rm irr} = 577 \text{ nm}$
1299	$(CO)_5ReMn(CO)_3(\alpha\text{-diimine}) + PPh_3 \rightarrow (CO)_5ReMn(CO)_2(PPh_3) (\alpha\text{-diimine}) + CO$ Photophysical Reactions: Spin Change	CH ₂ Cl ₂	25	150 120	5	$+15.7\pm0.5$		337 338	$\lambda_{\mathrm{irr}} = 577 \ \mathrm{nm}$
1300 1301	$^{1}A_{1} \rightarrow {}^{5}T_{2}$ Fe(pyimH) $_{3}$ ²⁺	MeOH/MeCN MeCN					$+5.3 \pm 0.2$ (a) $+14.3 \pm 0.5$ (a)		
1302 1303	$Fe(pyBimH)_3^{2+}$	Me ₂ CO MeOH/MeCN				$+4.9\pm0.3$	$+10.3 \pm 0.4$ (a) $+4.3 \pm 0.4$ (a)		
1304 1305	Fe(ppa) ₂ ²⁺	MeCN Me ₂ CO Me ₂ CO				$^{+5.9\pm0.4}_{+4.7\pm0.4}$	$+12.4 \pm 0.5$ (a) $+9.6 \pm 0.4$ (a) $+8.7 \pm 0.5$ (a)		
1307 1308	Fe(tppn) ²⁺ Fe(tpchxn) ²⁺	DMF MeCN				$^{+7\pm3}_{+5.1\pm0.7}$	$^{+16.1}\pm 2.0$ (a) $^{+10.7}\pm 1.0$ (a)		
1309 1310	${}^{5}T_{2} \rightarrow {}^{1}A_{1}$ Fe(pyimH) ₃ ²⁺	DMF MeCN		120		$^{+21\pm3}_{+5.4\pm1.2}$	$+15.5 \pm 2.0$ (a) $+11.5 \pm 1.0$ (a)	338	
1311 1312 1313		MeOH/CN MeCN Me ₂ CO				$-5.3 \pm 0.3 -5.4 \pm 0.3 -5.4 \pm 0.3$			
1314 1315 1316	Fe(pyBimH) ₃ ²⁺	MeOH/CN MeCN Me ₂ CO				-4.1 ± 0.3 -6.4 ± 0.3 -4.9 ± 0.4			
1317	$Fe(ppa)_2^{2+}$	Me ₂ CO				-6.1 ± 0.5			

Table 1. (Continued)

no.	reaction	solvent	<i>T</i> , °C		no. of data	ΔV^{\dagger} , cm 3 mol $^{-1}$	ΔV , cm ³ mol ⁻¹ (method)	ref(s)	remarks
1318	Pl	notochemical and H ₂ O	Photoph	ysica	l Proc	cesses (Cont	inued)		
	Fe(tppn) ²⁺	1120				-0.5			
319	•	DMF				-9 ± 3			
320	Fe(tpchxn) ²⁺	MeCN				-5.6 ± 0.7			
321	re(tpcnxn)-	DMF				$+5.7 \pm 2.0$			
322		MeCN				-6.1 ± 1.2			
	$^{3}\text{Pt}_{2}(\mu-\eta^{2}-\text{H}_{2}\text{P}_{2}\text{O}_{5})_{4}{}^{4-}$		21	300	6			339	quencher:
323 324		CH₃OH CH₃CN				-5.4 ± 1 -5.7 ± 1			PhCH₂OH PhCH₂OH
325		CH ₃ OH				-2.8 ± 1			Ph ₂ CHOH
326		CH ₃ OH				-2.6 ± 1			PhCH(OH)C ₂ H ₅
327		CH₃OH				-4.4 ± 1			PhCH(OH)CH ₃
328 329		СН₃ОН СН₃ОН				-4.7 ± 1 -4.1 ± 1			PhCD(OH)CH ₃ PhCH ₂ OCH ₃
330		H ₂ O				-1.4 ± 1			H ₂ C=CHCH ₂ OH
331		CH₃OH				-0.2 ± 1			H ₂ C=CHCH ₂ OH
332		CH₃OH				$+0.7 \pm 1$			H ₂ C=CHCH(ⁱ Pr)OH
333 334		CH₃CN CH₃OH				$^{+0.6}\pm 2 \ -2.5\pm 1$			n-Bu ₃ SnH n-Bu ₃ SnH
335		CH ₃ OH				$+2.8 \pm 1$			O_2
336		CH ₃ OH				-7.6 ± 3			cyclohexane
	$Pt_2(\mu - \eta^2 - H_2P_2O_5)_4^{4-}$	H_2O	8-22			105100		340	
	${}^{1}A_{1g} \rightarrow {}^{3}A_{2u}$ ${}^{1}A_{1g} + 0.01 \text{ M TINO}_{3} \rightarrow {}^{3}A_{2u}$					$+0.5 \pm 0.3$ -10.6 ± 0.9			
	quenching Tb(dpa) ₃ ³⁻ by Δ -Ru(phen) ₃ ³⁺	H_2O	25	280	9	-1.5 -1.5		341	
340	quenching Tb(dpa) ₃ ³⁻ by Δ -Ru(phen) ₃ ³⁺	MeOH	25	280	14	-2.6		341	
	Photophysical Reactions: Emission Lifetin	nes		910				0.40	1 - 497
341	$Cr(NH_3)_6^{3+} + L \rightarrow Cr(NH_3)_5L^{3+} + NH_3$ $L = H_2O$	H_2O	25	210		$+4.3\pm0.3$		342	$\lambda_{\rm irr} = 437 \ {\rm nm}$
342	L = DMF	DMF	25			$+3.8 \pm 0.2$			
343	L = DMSO	DMSO	25			$+3.5\pm0.2$			
344	$L = HMPA$ of $C_{P}(q_{1}q_{2}q_{2}q_{3})(NH_{1})^{3+}$	HMPA DMF	30 11-40	910		$+3.4 \pm 0.2 \\ +2.9 \pm 0.4$		343	1 = 499 nm [HClO] = 1 mh
343	cis-Cr(cyclam)(NH ₃) ₂ ³⁺ trans-Cr(cyclam)(NH ₃) ₂ ²⁺	DMF	11-40	210	2	⊤2.9 ± 0.4		344	$\lambda_{\rm irr} = 488 \text{ nm}, [HClO_4] = 1 \text{ mM}$
346			2		2	$+0.3\pm0.1$			
1347	~ (2)		62			$+7.0 \pm 0.2$			
	$Cu(dpp)_2^+$ $Cu(dpp)_2^+$	CH ₂ Cl ₂	20 20	250 250		$-1.6 \\ -1.2$		345 345	
	Cu(dpp) ₂ Cu(dpp) ₂ ⁺	CH_3CN $CHCl_3$	20	250		+1.2		345	
	Cu(dpp) ₂ ⁺	THF	20	250		-0.3		345	
	Cu(dmp) ₂ ⁺ (MLCT state)	DCM	23	000		0.4.1.0.0		346	quencher:
1352 1353				300 260	4 2	$-3.4 \pm 0.2 \\ -4.3 \pm 0.2$			none 0.3 M CH ₃ CN
354				260	2	-4.0 ± 0.2			0.3 M CH ₃ OH
	Cu(dpp) ₂ ⁺ (MLCT state)	DCM	23					346	quencher:
355				300	5	-1.6 ± 0.2			none
356	³ Cu(dpp) ₂ ⁺ (MLCT state)	CH_2Cl_2	23	260 250	2 6	-1.2 ± 0.2		31 347	0.3 M CH ₃ CN quencher:
357	Cu(upp) ₂ (MLC1 state)	CITZCIZ	20	200	Ü	$+8.0\pm0.8$		31,347	Cr(hfac) ₃
358						$+0.8\pm1.8$			Cr(tfbzac) ₃
359						$+2.1 \pm 1.8$			Cr(tta) ₃
360 361						$+3.8 \pm 0.4$ -3.5 ± 0.4			Cr(tc-bzac) ₃ Cr(br-dbm) ₃
362						-8.1 ± 1.0			Cr(tfac) ₃
363						-3.8 ± 1.0			Cr(n-acac) ₃
364 365						-1.4 ± 0.7 -2.4 ± 0.5			Cr(tc-acac) ₃ Cr(br-acac) ₃
366						-2.4 ± 0.3 -0.3 ± 1.0			Cr(dbm) ₃
367						-0.1 ± 0.8			Cr(acac) ₃
368						$+6.9\pm1.3$			<i>p</i> -dinitrobenzene
369 370						$-20.4 \pm 4.8 \\ +1.2 \pm 0.4$			<i>p</i> -chloronitrobenzene 9,10-dichloroanthracene
371						-2.4 ± 1.0			O ₂
372	Ru(bpy) ₃ ²⁺	EtOH/MeOH	-113	100	9	+0.47		348	- 2
	$Ru(bpy)_3^{2+} + Q \rightarrow Ru(bpy)_3^+ + Q$	CH CY	25	300	4			349	quencher:
373 374		CH₃CN CH₃CN				+1.3 +1.1			DMA DEA
375		CH ₃ CN CH ₃ CN				$^{+1.1}$			DMpT
376		CH ₃ CN				+8.9			В
377		CH ₃ CN				+7.7			TMB
378 379		n-butyl alcohol n-butyl alcohol				$^{+1.8}$ $^{+4.0}$			DMA DEA
380		n-butyl alcohol				$^{+4.0}$			DMpT
381		n-butyl alcohol				+13			В
	DI (240 III	n-butyl alcohol	C=	00-		+11		050	TMB
382	$Rh_2(\mu-\eta^2-1,3-diisocyanopropane)^{2+}$	CH_3CN	25	300	7			350	
382						-0.5			
382	radiative decay nonradiative decay					$-0.5 \\ -0.5$			
1382 1383 1384	radiative decay	CH₃CN	7	250	7			350	

Table 1. (Continued)

	i. (Continued)		т	D	no of	A T.#	A I/ cm3 mol-1		
no.	reaction	solvent	°C	P, MPa	no. of data	$ \Delta V^{\dagger}, $ $ cm^3 mol^{-1}$	ΔV , cm ³ mol ⁻¹ (method)	ref(s)	remarks
1905		ochemical	and	Photo	physica	l Processes (Continued)		
1385 1386	radiative decay nonradiative decay					$^{+2.8}_{+2.8}$			
1387	W(CO) ₅ (4-AcOpy)	$C_6H_5CH_3$		300	2	$+0.1 \pm 0.3$		335	
1388	W(CO) ₅ (CNpy)	$C_6H_5CH_3$		300	2	$+1.2\pm0.3$		335	
	$Ir_2(\mu-\eta^2-pyrazolate)_2(COD)_2$		25	300	7			350	
1389	radiative deactivation	CH ₃ CN				+4.6			
1390 1391	nonradiative deactivation radiative deactivation	CH ₃ CN C ₆ H ₅ CH ₃				$^{+4.7}$ $^{+4.4}$			
1392	nonradiative deactivation	$C_6H_5CH_3$				+4.4			
	$Pt_2(\mu-\eta^2-H_2P_2O_5)_4^{4-}$	0 0 0	25	300	7			350	
1393	radiative deactivation	H_2O				-1.6			
1394 1395	nonradiative deactivation radiative deactivation	H ₂ O CH ₃ CN				$-2.4 \\ -0.2$			
1000	radiative deactivation	CH3CH				0.2			
1000	P. HOTHAM					gical Reaction		051	
1396 1397	B_{12} - $H_2O^+ + 4$ -Mepy $\rightleftharpoons B_{12}$ - 4 -Mepy $^+ + H_2O$ B_{12} - $H_2O^+ + 3$ -Acpy $\rightleftharpoons B_{12}$ - 3 -Acpy $^+ + H_2O$	H_2O H_2O	25 25	150 150	6 6		$+1.7 \pm 0.7$ (a) $+5.7 \pm 1.3$ (a)	351 351	$\mu = 1.5 \text{ M}, \text{ pH} = 7$ $\mu = 1.5 \text{ M}, \text{ pH} = 7$
1398	B_{12} - $H_2O^+ + TU \rightarrow B_{12}$ - $TU^+ + H_2O$	H ₂ O	20	150	4	$+9.1\pm0.9$	10.7 ± 1.5 (a)	352	$\mu = 1.3 \text{ M}, \text{ pH} = 7$ $\mu = 0.1 \text{ M}, \text{ pH} = 4$
1399	B_{12} -TU ⁺ + $H_2O \rightarrow B_{12}$ -H ₂ O ⁺ + TU	H ₂ O	20	150	4	$+6.7 \pm 0.3$		352	$\mu = 0.1 \text{ M}, \text{ pH} = 4$
	$B_{12a}-H_2O^+ + L^{n-} \rightarrow B_{12a}-L^{(n-1)+} + H_2O$	H_2O	25	500	5			353	
1400	$L^{n-} = \operatorname{Fe}(\operatorname{CN})_6^{4-}$					$+16.2 \pm 1.2$			$\mu = 0.13 \text{ M (NaClO}_4), \text{ pH} = 6.0$
1401 1402	$L^{n-} = \text{Fe}(\text{CN})_5 \text{NO}^{2-} \ L^{n-} = \text{Fe}(\text{CN})_5 \text{H}_2 \text{O}^{2-}$					$+8.9 \pm 0.5$			$\mu = 0.1 \text{ M (NaClO_4)}, \text{ pH} = 6.0$
1402	$L^{n-} = N_3^-$					$+8.2 \pm 0.8 \\ +6.9 \pm 0.2$			$\mu = 0.1 \text{ M (NaClO}_4), \text{ pH} = 6.0$ $\mu = 0.5 \text{ M (NaClO}_4), \text{ pH} = 6.4$
1404	B_{12} - $H_2O^+ + py \rightarrow B_{12}$ - $py^+ + H_2O$	H_2O	25	100	5	$+8.7 \pm 1.2$	-8.2 ± 2.0 (c)	354	$\mu = 0.5 \text{ M}$
1405	B_{12} -py ⁺ + $H_2O \rightarrow B_{12}$ - H_2O^+ + py	H_2O	25	100	5	$+16.9\pm0.8$	-12.0 ± 2.0 (a)	354	$\mu = 0.5 \text{ M}$
1406	B_{12} - $H_2O^+ + NH_3 \rightarrow B_{12}$ - $NH_3^+ + H_2O$	H_2O	25	130	6	$+9.4 \pm 0.8$		355	$\mu = 1.0 \text{ M (NaClO_4)}, \text{ pH} = 2.0$
1407	$B_{12}-H_2O^+ + NH_3 \rightarrow B_{12}-NH_3^+ + H_2O$	H ₂ O	25	130	5	$+8.6 \pm 0.4$		355	$\mu = 1.0 \text{ M (NaClO4)}, \text{ pH} = 2.5$
1408 1409	$B_{12}-H_2O^+ + NH_3 \rightarrow B_{12}-NH_3^+ + H_2O$ $B_{12}-H_2O^+ + N_3^- \rightarrow B_{12}-N_3 + H_2O$	H_2O H_2O	25 25	130 130	5 6	$+8.3 \pm 0.4 \\ +4.9 \pm 0.3$		355 355	$\mu = 1.0 \text{ M (NaClO}_4), \text{ pH} = 3.0$ $\mu = 1.0 \text{ M (NaClO}_4)$
1410	$B_{12} - H_2O^+ + N_3^- \rightarrow B_{12} - N_3^+ + H_2O$	H ₂ O	25	130	6	$+6.9 \pm 0.3$		355	$\mu = 0.1 \text{ M (NaClO}_4)$
1411	B_{12} - $NH_3^+ + H_2O \rightarrow B_{12}$ - $H_2O^+ + NH_3$	H_2O	25	130	6	$+8.3\pm1.6$		355	$\mu = 1.0 \text{ M (NaClO}_4), \text{ pH} = 2.0$
1412	$Hr + O_2 \rightarrow HrO_2$	H_2O	23	150	5	$+13.3 \pm 1.1$	-39 ± 2 (b)	356	
1413 1414	$HrO_2 \rightarrow Hr + O_2$ $Mbr + O_2 \rightarrow MbrO_2$	H ₂ O	23 22	150 100	5 5	$+52.2 \pm 0.7$		356 357	
1414	$Mhr + O_2 \rightarrow MhrO_2$ $MhrO_2 \rightarrow Mhr + O_2$	H_2O H_2O	25	100	5	$+8.4 \pm 0.3 \\ +28 \pm 3$		357	
1416	$Mb + O_2 \rightarrow MbO_2$	H ₂ O	25	150	5	$+5.2 \pm 0.5$	-19.3 ± 1.5 (a)	358	$\mu = 0.1 \text{ M (NaCl)}, \text{ pH} = 8.5$
1417	$MbO_2 \rightarrow Mb + O_2$	H_2O	25	150	5	$+23.3\pm1.8$		359	$\mu = 0.1 \text{ M (NaCl)}, \text{ pH} = 8.5$
1.110	$Mb + L \rightarrow Mb-L$	H_2O	25	150		100 00		359	$\mu = 0.1 \text{ M NaCl}$
1418 1419	$L = CO$ $L = O_2$				4	$-10.0 \pm 0.8 \\ +5.2 \pm 0.5$			
1413	$L = G_2$ L = MeNC				8	$+8.8 \pm 1.0$			
1421	$L = {}^{t}BuNC$				6	$+9.3 \pm 0.3$			
	$Mb-L \rightarrow Mb + L$	H_2O	25	200	4			359	
1422	L = CO					$+11.7 \pm 1.1$			
1423 1424	$egin{aligned} \mathbf{L} &= \mathbf{O}_2 \\ \mathbf{L} &= \mathbf{MeNC} \end{aligned}$					$+12.6 \pm 1.7 +9.1 \pm 3.5$			
1425	$Mb + CO \rightarrow Mb-CO$	H_2O	25	150	4	-3.8 ± 1.6	-4.1 ± 0.8 (c)	360	
1426	Mb - $CO \rightarrow Mb + CO$	H_2O	25	150	4		-3.0 ± 0.6 (a)	360	
1407	(ME O) ME O	H_2O	20	200	7	10.5		361	pH = .8
1427 1428	$ (Mb_s \cdots O_2) \rightarrow Mb_s O_2 (M_b \cdots O_2) \rightarrow Mb_s + O_2 $					$+3.5 \\ +16.7$			
1429	$Mb_s + O_2 \rightarrow (Mb_s \cdots O_2)$					+10.4	-6.3 (c)		
1430	$Mb_s + O_2 \rightarrow Mb_sO_2$					+4.6	. ,		
1431	$Mb_s + CO \rightarrow (Mb_s \cdots CO)$					-9.2			
1432	$Mb_H \cdots O_2 \rightarrow Mb_H O_2$					-8.4			
1433 1434	$Mb_H \cdot \cdot \cdot O_2 \rightarrow Mb_H + O_2$ $Mb_H + O_2 \rightarrow (Mb_H \cdot \cdot \cdot O_2)$					$+11.2 \\ +12.3$	+1.1 (c)		
1435	$Mb_H + O_2 \rightarrow Mb_HO_2$					+3.8	11.1 (c)		
1436	$Mb_H + CO \rightarrow (Mb_H \cdots CO)$					-12.7			
1437	$(Mb_D \cdots O_2) \rightarrow Mb_D O_2$					-17.8			
1438	$(Mb_D \cdots O_2) \rightarrow Mb_D + O_2$ $Mb_D + O_2 \rightarrow (Mb_D \cdots O_2)$					-2.1	10.7 (a)		
1439 1440	$Mb_D + O_2 \rightarrow (Mb_D - O_2)$ $Mb_D + O_2 \rightarrow Mb_D O_2$					$^{+8.6}_{0.0}$	+10.7 (c)		
1441	$Mb_D + CO \rightarrow (Mb_D \cdots CO)$					-18.8			
1442	$CO + \alpha$ -Hb $\rightleftharpoons \alpha$ -Hb-CO	H_2O	20	150	4	-18.4 ± 0.5		362	
1443	$CO + \beta$ -Hb $\rightleftharpoons \beta$ -Hb-CO	H ₂ O	20	150	4	-22.4 ± 1.7		362	
$1444 \\ 1445$	$R-Hb+CO \rightarrow R-Hb-CO$ $T-Hb+CO \rightarrow T-Hb-CO$	H_2O H_2O	20 10	150 150	15 15	$-9.0 \pm 0.7 \\ -31.7 \pm 2.4$		363 363	pH = 7, 50 mM Tris/HCl pH = 7, 50 mM Tris/HCl
1446	MCPH + CO	H ₂ O	25	150	6	-31.7 ± 2.4 -19.3 ± 0.4		359	pri – 7, 30 mw 1118/11C1
1447	$MCPH + O_2$	H ₂ O	25	150	6	-11.3 ± 1.0		359	
1448	PHDME + MeNC	H_2O	25	150	6	$+11.6\pm0.8$		359	
1449	PHDME + ¹BuNC	H ₂ O	25	150	6	-9.9 ± 1.0		359	
$1450 \\ 1451$	PHDME + 1Melm PCO → P•CO (α chain)	H_2O H_2O	25 20	150 150	$\frac{6}{4}$	$+10.9 \pm 3.1$ -21.8 ± 0.9		359 362	see abbvn
1451	$PCO \rightarrow P \cdot CO (\alpha \text{ chain})$ $PCO \rightarrow P \cdot CO (\beta \text{ chain})$	H ₂ O	20	150	4	-21.8 ± 0.9 -15.4 ± 0.8		362	see abbyn
1453	$P \cdot CO \rightarrow P + CO (\alpha \text{ chain})$	H ₂ O	20	150	4	$+11.1 \pm 0.8$		362	see abbvn
1454	$P^*CO \rightarrow P + CO (\beta \text{ chain})$	H ₂ O	20	150	4	$+7.4 \pm 0.7$		362	see abbvn
1455	$P + CO \rightarrow P^{\bullet}CO (\alpha \text{ chain})$ $P + CO \rightarrow P^{\bullet}CO (\beta \text{ chain})$	H ₂ O	20	150	4	$+16.0 \pm 0.6$		362	see abbyn
1456	$P + CO \rightarrow P^*CO (\beta \text{ chain})$	H_2O	20	150	4	$+12.1 \pm 0.6$		362	see abbvn

Table 1. (Continued)

no.	reaction	solvent	°C		no. of data	ΔV^{\dagger} , cm 3 mol $^{-1}$	ΔV , cm ³ mol ⁻¹ (method)	ref(s)	remarks
1457		anic and Biolo C ₆ H ₅ CH ₃	ogical 25	Read 300		(Continued) -13.7 ± 1.4		364	
	HRP + CO → HRP-CO	061150113	20	120	4	10.7 ± 1.4		365	
1458		H ₂ O	34			-23.6 ± 1			
1459 1460		H ₂ O H ₂ O	20 4			-23.7 ± 1 -26.9 ± 1			
1461		H ₂ O/40% egly	20			-20.9 ± 1 -6.98 ± 0.02			
1462		H ₂ O/40% egly	0.5			-10.5 ± 0.6			
1463		H ₂ O/40% egly				-14.6 ± 0.8			
1464 1465		50% MeOH 50% MeOH	20 10			$-9.4 \pm 0.2 \\ -6 \pm 0.2$			
1466		50% MeOH	4			-5.5 ± 0.2			
1467		50% MeOH	0			-5.2 ± 1			
1468 1469		50% MeOH H ₂ O/glyc	$-10 \\ -20$			$-2.3 \pm 0.3 \ -1.6 \pm 0.4$			
	hemoprotein + CO	H ₂ O/glyc	25	200	6	-1.0 ± 0.4		366	
1470	enzyme = $P450_{scc}$, ligand = S^- (cis)	2 - 6 5 -				$+2\pm2$			
1471	enzyme = P450LM2, ligand = S^- (cis)					$+3 \pm 2$			
1472 1473	enzyme = P450LM3, ligand = S^- (cis) enzyme = P4507 α , ligand = S^- (cis)					$^{+6}\pm 2 \ +2\pm 2$			
1474	enzyme = CPO, ligand = S^- (cis)					$+1\pm2$			
1475	enzyme = LP, ligand = N (his)					-10 ± 3			
1476 1477	enzyme = P420, ligand = unknown enzyme = P420, ligand = unknown					$-25 \pm 5 \\ -11 \pm 6$			
1477	enzyme = P420, ligand = unknown enzyme = P420, ligand = unknown					-11 ± 6 -42 ± 8			
	cytochrome P450 _{cam} + CO	H ₂ O/glyc	20					367	pH = 7.4
1479	substrate = adamantane					$+7 \pm 3$			
1480 1481	substrate = norcamphor substrate-free					$+3 \pm 2 \\ +4 \pm 1$			
1482	substrate = fenchone					$+20 \pm 1$			
1483	substrate = TMCH					$+14\pm1$			
1484 1485	substrate = bromocamphor					-32 ± 2 -31 ± 2			
	substrate = camphor NADH + horse liver alcohol dehydrogenase					-31 ± 2		368	
1486		H ₂ O/DMSO	20	100	3	$+19\pm2$			
1487		H ₂ O	-5	150		$+23 \pm 0.5$			
1488	carbonic anhydrase catalysis	H ₂ O H ₂ O	-21.5 25	100 150	3 6	$+28 \pm 0.3$ -9 to +14		369	details in ref
	cytochrome c oxidase:	H ₂ O	7	150	Ü	0 10 111		370	details in ref
	reduced oxidase, 445 nm ≠ 443 nm						>0 (a)		
	aerobic steady state partially reduced oxidase	шо	5	200	>10		-76 (a) -50 (a)	371	pH = 7 $\mu = 1-10 \text{ mM (KCl)},$
1432	porphyrin c —cytochrome b_5 complex formation	H_2O	J	200	- 10		-30 (a)	3/1	$\mu = 1 - 10 \text{ filly (KCI)},$ pH = 7
	Cyt c^{II} + Co(terpy) ₂ ³⁺ \rightarrow Cyt c^{III} + Co(terpy) ₂ ²⁺	H_2O	25	100		$+18.4\pm1.3$	+36 (b), +33 (c)		$\mu = 0.1 \text{ M}, \text{ pH} = 7.2$
	Cyt c ^{III} + Co(terpy) ₂ ²⁺ \rightarrow Cytc ^{II} + Co(terpy) ₂ ³⁺ Ru ²⁺ \rightarrow ZnP*+ in (NH ₃) ₅ Ru(His33)Zn-Cyt c	H ₂ O H ₂ O	25 25	130 150	5 4	$^{+18.0\pm1.4}_{-12\pm1}$		372 373	$\mu = 0.1 \text{ M}, \text{ pH} = 7.2$
	$Fe^{2+} \rightarrow Ru^{3+}$ in $(bpy)_2(im)Ru(His33)Fe-Cyt$ c	H ₂ O	25	150	4	0		373	
1497	$Fe^{2+} \rightarrow Ru^{3+}$ in $(bpy)_2(im)Ru(His72)Fe-Cyt$ c	H_2O	25	150	4	-6 ± 2		373	
	$(NH_3)_5(lut)Ru^{II} + Cytc^{II} \rightarrow (NH_3)_5(lut)Ru^{II} + Cytc^{II}$ $(NH_3)_5(lut)Ru^{II} + Cytc^{III} \rightarrow (NH_3)_5(lut)Ru^{II} + Cytc^{II}$	H ₂ O H ₂ O	25 25	150 150					$\mu = 0.1 \text{ M}, \text{ pH} = 7.1$ $\mu = 0.1 \text{ M}, \text{ H} = 7.1$
	$(NH_3)_5(\text{tat})Ru^{III} + Cytc^{II} \rightarrow (NH_3)_5(\text{tat})Ru^{II} + Cytc^{III}$		25	150		$-17.8 \pm 1.6 +14.7 \pm 0.9$			$\mu = 0.1 \text{ M}, 11 = 7.1$ $\mu = 0.1 \text{ M}, \text{ pH} = 7.1$
1501	$(NH_3)_5(etpy)Ru^{II} + Cytc^{III} \rightarrow (NH_3)_5(etpy)Ru^{III} + Cytc^{II}$	H ₂ O	25	150		-14.9 ± 1.1			$\mu = 0.1 \text{ M}, \text{ pH} = 7.1$
	$(NH_3)_5(py)Ru^{III} + Cytc^{II} \rightarrow (NH_3)_5(py)Ru^{II} + Cytc^{III}$	H ₂ O	25	150		$+17.4 \pm 1.5$			$\mu = 0.1 \text{ M}, \text{ pH} = 7.1$
	$(NH_3)_5(py)Ru^{II} + Cytc^{II} \rightarrow (NH_3)_5(py)Ru^{III} + Cytc^{II}$ $Ru(NH_3)_5isn^{3+} + Cytc^{II} \rightarrow Ru(NH_3)_5isn^{2+} + Cytc^{III}$	H ₂ O H ₂ O	25 15	150 100		$-17.7 \pm 0.8 \\ +14.2 \pm 1.5$	$+35.1 \pm 1.7$ (a)	374	$\mu = 0.1 \text{ M}, \text{ pH} = 7.1$ $\mu = 0.1 \text{ M}, \text{ pH} = 7.1$
	$Ru(NH_3)_5isn^{2+} + Cytc^{III} \rightarrow Ru(NH_3)_5isn^{3+} + Cytc^{II}$	H ₂ O	25	100		-17.2 ± 1.5		375	$\mu = 0.1 \text{ M}, \text{ pH} = 7.1$ $\mu = 0.1 \text{ M}, \text{ pH} = 7.1$
	$(H_3N)_5Ru^{II}\text{-}(His33)Cytc^{III} \rightarrow (H_3N)_5Ru^{III}\text{-}(His33)Cytc^{II}$	H_2O	25	150		-17.7 ± 0.9		376	
	$(H_3N)_5Ru^{II}$ - $(His39)Cytc^{III} \rightarrow (H_3N)_5Ru^{III}$ - $(His39)Cytc^{III}$	H ₂ O	25	150		-18.3 ± 0.7		376	
1000	$Ru^{II}(NH_3)_6^{2+} + (His33)Cytc^{III} \rightarrow Ru^{III}(NH_3)_6^{3+} + (His33)Cytc^{II}$	H_2O	25	150	4	-15.6 ± 0.6		376	
	histone (H2A-H"B) ₂ dissociation	H_2O	20	220	>10			377	0.07-4
1509							$+90 \pm 4$ (a)		$\mu = 0.2 \text{ M (NaCl)}$
1510 1511	tetramer-dimer equilibrium						$+75 \pm 5$ (a) $+108 \pm 4$ (a)		$\mu = 2.0 \text{ M (NaCl)}$ $\mu = 0.2 \text{ M (NaCl)}$
	octamer-tetramer equilibrium						$+168 \pm 6$ (a)	379	$\mu = 2.0 \text{ M (NaCl)}$
	octamer—dimer equilibrium						$+143 \pm 2$ (a)		$\mu = 0.2 \text{ M (NaCl)}$
	octamer-dimer equilibrium yeast hexokinase dissociation:	H_2O		280	>6		$+142 \pm 2$ (a)	378	$\mu = 2.0 \text{ M (NaCl)}$
	P2 monomer—dimer equilibrium			200	Ū			5.0	
1515	•		0				+116 to+154 (a)		pH = 7.5
1516 1517			0 30				+119 (a) +167 (a)	380	$pH = 7.5, 0.1 \text{ M Na}_2SO_4$ pH = 7.5
1518			20				+167 (a) +162 (a)		pH = 7.5 pH = 7.5
1519			20				+111 (a)		pH = 6.0
1520	D1 manamar dimar aquilibrium		20				+155 (a)		pH = 9.0
1521	P1 monomer-dimer equilibrium		0				+141 (a)		pH = 7.5
1522			0				+135 (a)		$pH = 7.5$, 0.1 M Na_2SO_2
	Rb. sphaeroides R-26			300	6 - 8	0.4		379	-
	$P^+Q_A^- \rightarrow PQ_A$					-6.1 ± 0.6			
1523 1524	$P^+Q_B^- \rightarrow PQ_B$					-6.9 ± 1.9			

Table 1. (Continued)

1 4151	ie ii (continueu)									
no.	reaction	solvent	<i>T</i> , °C	<i>P</i> , MPa	no. of data	$rac{\DeltaV^{\! +},}{\mathrm{cm}^{3}\mathrm{mol}^{-1}}$	$\Delta \bar{V}$, cm ³ mol ⁻¹ (method)	ref(s)	remarks	
Bioinorganic and Biological Reactions (Continued)										
1526	P ^R decay (no Q _A ⁻)		0			-0.5 ± 1.0				
	Rps. viridis			300	6 - 8			379		
1527	$\hat{P}+Q_A \rightarrow PQ_A$					$+8.5\pm0.9$				
1528	P^R decay (Q_A^-)					$\pm 0.4 \pm 0.8$				
	bacteriochlorophyll a (pyridine)			300	6 - 8			379		
1529	Triplett decay					$+2.6\pm0.4$				
	inactivation of proteins:									
	$\text{cyt P}_{450\text{cam}} \rightarrow \text{cyt P}_{420}$	H_2O	20	200	10			380	$pH = 7.5, 0.1 \text{ M Na}_2SO_4$	
	wild-type protein									
1530	no camphor bound to the active site					-73 ± 1				
1531	camphor bound to the active site					-197 ± 7				
	[Tyr96 → Phe] mutant									
1532	no camphor bound to the active site					-86 ± 7				
1533	camphor bound to the active site					-87 ± 4				
	electron transfer:	H_2O						280		
1534	DCPIP + L-ascorbic acid		25	150		-4.3 ± 1				
1535	cytochrome c + L-ascorbic acid		10	190		-16.4 ± 0.8				
	HAO + cytochrome c		20	100		-24.3 ± 0.4				
1537	$Ru(NH_3)_5isn^{3+} + Cytc^{II} \rightleftharpoons Ru(NH_3)_5isn^{2+} + Cytc^{III}$	H_2O	25	200	5		$+26.4 \pm 0.9$ (a)	381		
1538	$(NH_3)_5Ru^{III}$ -Cytc ^{II} \rightleftharpoons $(NH_3)_5Ru^{II}$ -Cytc ^{III}	H_2O	25	200	5		$+31.7 \pm 1.2$ (a)	381		
1539	$trans$ -(NH ₃) ₄ (isn)Ru ^{III} -Cytc ^{II} $\rightleftharpoons trans$ -(NH ₃) ₄ (isn)Ru ^{II} -Cytc ^{III}	H_2O	25	200	5		$+21.1 \pm 1.0$ (a)	381		
	$trans$ -(NH ₃) ₄ (py)Ru ^{III} -Cytc ^{II} $\rightleftharpoons trans$ -(NH ₃) ₄ (py)Ru ^{II} -Cytc ^{III}	H_2O	25	200	5		$+23.3 \pm 0.6$ (a)	381		
1541	$trans$ -(NH ₃) ₄ (lut)Ru ^{III} -Cytc ^{II} $\rightleftharpoons trans$ -(NH ₃) ₄ (lut)Ru ^{II} -Cytc ^{III}	H_2O	25	200	5		$+18.6 \pm 0.4$ (a)	381		
	$Cytc^{III} + Ag + Cl^{-} \rightleftharpoons Cytc^{II} + AgCl$	H_2O	25		11			382	1 M NaCl, H = 7	
1542				0			-27 (a)			
1543				50			-25 (a)			
1544				100			-23 (a)			
1545				150			-20 (a)			
1546				200			-18 (a)			
1547				250			−15 (a)			
1548				300			-13 (a)			
1549				350			-10 (a)			
1550				400			-7.9 (a)			
1551				450			-5.5 (a)			
1552				500			-3.0 (a)			

^a Abbreviations: 2a, tricarbonyl[1-4-η-5-exo(N-4-formylpyridinio)cyclohexa-1,3-diene]iron; 2b, tricarbonyl[1-4-η-5-exo(N-4-formylpyridinio]cyclohexa-1,3-diene]iron; 2b, tricarbonyl[1-4-η-5-exo(N-4-formylpyridinio]cyclohexa-1,3-diene]iron; 2b, tricarbonyl[1-4-η-5-exo(N-4-formylpyridinio]cyclohexa-1,3-diene]iron; 2b, tricarbonyl[1-4-η-5-exo(N formylpyridinio)-2-methoxycyclohexa-1,3-diene]iron; 2c, tricarbonyl[1- $4\frac{1}{\eta}$ -5-exo(N-4-formylpyridinio)cyclohepta-1,3-diene]iron; 3a, tricarbonyl[η^5 -exo(4-ethylpyridinio)-2-methoxycyclohexa-1,3-diene]iron; 3b, tricarbonyl[η^5 -exo(4-ethylpyridinio)cyclohepta-1,3dieneliron; 4-CHOpy, 4-formylpyridine; [15]aneN₄, trans-1,4,8,12-tetraazacyclopentadecane; [9]aneS₃, 1,4,7-trithiacyclononane; aben, 1,2-bis(o-iminobenzylideneamino)ethane; acac, acetylacetone; AcO-, acetate ion; ado, 5'-deoxyadenosyl (radical); [AdoCbi]+OH-, adenosylcobinamide; ar (arsenazo III), 3,6-bis(o-arsonophenylazo)-4,5-dihydroxynaphthalene; Asc, ascorbate anion; AT, 10-amino-10-methyl-1,4,8,12-tetraazacyclopentadecane; ATA, N-acetyl-L-tryptophanamide; ATpCA, N-acetyl-L-tryptophanp-chloroanilide; ATP, adenosine triphosphate; B, benzidine; B_{12a} and B₁₂, Cob(III)alamin; B₁₂-H₂O⁺, aquocobalamin; BHm, Protoheme; bisoxa(DO3A)₂, bis(1,4-(1-(carboxymethyl)-1,4,7,10-tetraaza-4,7,10-tris(carboxymethyl)-1-cyclododecyl))-1,10-diaza-3,6-dioxadecane; BO(DO3A)₂, 2,11-dihydroxy-4,9-dioxa-1,12-bis[1,4,7,10-tetraaza-4,7,10-tris(carboxymethyl))cyclododecyl]dodecane; bpy, 2,2'-bpy-1,10-diaza-1,12-bis[1,4,7,10-tetraaza-4,7,10-tris(carboxymethyl)cyclododecyl]dodecane; bpy, 2,2'-bpy-1,10-diaza-1,12-bis[1,4,7,10-tetraaza-4,7,10-tris(carboxymethyl)cyclododecyl]dodecane; bpy, 2,2'-bpy-1,10-diaza-1,12-bis[1,4,7,10-tetraaza-4,7,10-tris(carboxymethyl)cyclododecyl]dodecane; bpy, 2,2'-bpy-1,10-diaza-1,12-bis[1,4,7,10-tetraaza-4,7,10-tris(carboxymethyl)cyclododecyl]dodecane; bpy, 2,2'-bpy-1,10-diaza-1,12-bis[1,4,7,10-tetraaza-4,7,10-tetraaza ridine; br-acac, 3-bromo-2,4-pentanedione; br-dbm, 2-bromo-1,3-diphenyl-1,3-propanedione; BTE, *cis*-2,2,7,7-tetramethyl-3,6-dithiaoctane; Bu, *n*-butyl; Bu^t, *tert*-butyl; Bz, benzyl; bz, benzene; C222, 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane; CB, chlorobenzene; H₂cht²⁻, chromotropic acid (1,8-dihydroxynaphthalene-3,6-disulfonate); Cl-phen, 2-chloro-1,10-phenanthroline; CMP, cytidine-5'-monophosphate; Cndipp, 2,6-diisopropylphenyl isocyanide; CNpy, 4-cyanopyridine; cod, cycloocta-1,5-diene; COD, η^4 -1,4-cyclooctadiene; cp, cyclopentadienyl; 18-crown-6, 1,4,7,10,13,16-hexaoxacyclooctadecane; Cry, 4,7,13,16,21-pentaoxa-1,10diazabicyclo[8.8.5]tricosane; cupf, cupferron (ammonium N-nitrosophenylhydroxylamine); cyclam, 1,4,8,11-tetraazacyclotetradecane; diazabicyclo[8.8.5]tricosane; cupi, cupierron (ammonium /N-nitrosopnenyinydroxylamine); cyclam, 1,4,8,11-tetraazacyclotetradecane; cyclen, 1,4,7,10-tetraazacyclodecane; CyDTA, cyclohexyldiaminetetraacetate; cyt c, cytochrome c; dab, 1,4-diisopropyl-1,4-diazabutadiene; dbm, dibenzoylmethane; dbubpy, 4,4'-di-tert-butyl-2,2'-bipyridine; DCA, 9,10-dicyanoanthracene; DCE, 1,2-dichloroethane; DCM, dichloromethane; DCPIP, 2,6-dichlorophenolindophenol; DEA, N,N-diethylaniline; DEMX, diethyl mesoxalate; d(GpG), dinucleotide; diamsar, H₂NC(CH₂N(CH₂)₂NCH₂)₃CNH₂; diamsarH₂, H₃NC(CH₂N(CH₂)₂NCH₂)₃CNH₃²⁺; dien, diethylenetriamine; dma, N,N-dimethylacetoamide; DMA, N,N-dimethylaniline; DMAD, dimethyl acetylenedicarboxylate; DMMX, dimethyl mesoxalate; dmbpy, 4.4'-dimethyl-2.2'-bipyridine; dmbzim, 5.6-dimethylbenzimidazole; DMF, N.N-dimethylfornamide; H_2 dmg, dimethylglyoxime; dmp, 2.9-dimethyl-1.10-phenanthroline; DMpT, N.N-dimethyl-p-toluidine; DMPU, dimethylpropylene urea; DMSO, dimethyl sulfoxide; a-, e-DMSO, axially, equatorially bonded DMSO; dmtf, N.N-dimethylthiofornamide; DOTA, tetraazacyclododecane-N,N,N',N''-pentaacetate; dpbpy, 4,4'-diphenyl-2,2'-bipyridine; H₂dpg, diphenylglyoxime; dpp, 2,9-diphenyl-1,10-phenanthroline; dpt, H₂N(CH₂)₃NH(CH₂)₃NH₂; DTBN, di-*tert*-butyl nitroxide; DTH, 2,5-dithiahexane; dto, 3,6-dithiaoctane; dtpa, diethylenetriaminepentaacetate; edta, ethylenediaminetetraacetate ion; edda H_2 , ethylenediamine-N,N-diacetic acid; edta H_4 , ethylenediaminetetraacetic acid; eee, 1,8-diamino-3,6-dithiaoctane; egly, ethylene glycol; ein, ethane-1,2-diimine; en, 1,2-diaminoethane; Et, ethyl; etbp, 4-ethyl-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane; Et $_4$ dien, 1,1,7,7-tetraethyldiethylenetriamine; Et $_5$ dien, 1,1,4,7,7-pentaethyldiethylenetriamine; Et $_2$ DTC, diethyldithiocarbamate; etpy, 4-ethylpyridine; FB, fluorobenzene; fod, tris-6,6,7,7,8,8,8-heptafluoro-2-dimethyl-3,5-octanedionate; glyc, glycerol; GlyGlyHis, glycylglycylhistidine; glyH, glycine; gmi, N,N-dimethylglyoxal diimine; H_2 aeida, N-(2-aminoethyl)-N-(carboxymethyl)glycine; H_2 dmg, 2,3-butanedione dioxime; H_2 dh, acethydroxamic acid; H_2 0, hydroxylamine oxidoreductase; H_2 0, human adult hemoglobin; α - H_2 0, β - H_3 1, isolated chains of human hemoglobin; HCY, hexamethylcyclam; Hdca, dichloroacetic acid; Hdcp²-, 2,6-dicarboxy-4-hydroxypyridine; H₄dfb+, desferrioxamine B; hedta, N-(hydroxyethyl)ethylenediamine triacetate; hfac, hexafluoroacetylacetonate; H(i-dtma), N, N-bis(2-aminoethyl)glycine; hipt, 4-isopropyltropolone; (His33)cyt, horse heart ferricytochrome c; (His39)cyt, Candida~krusei~ ferricytochrome c; (HMN, 2,2,4,4,6,8,8-heptamethylnonane; HMPA, hexamethylphosphoramide; Hr, hemerythrin; Htos, p-toluenesulfonic acid; H $_2$ res 2 -, 1-((2,4-dihydroxy-1-phenyl)azo)-8-hydroxynaphthalene-3,6-disulfonate; HRP, horseradish peroxidase; hxsb, 1,8-bis((2-pyridylmethyl-phenyl)azo)-8-hydroxynaphthalene-3,6-disulfonate; hxsb, 1,8-bis((2-pyridylmethyl-phenyl)azo)-8-hydroxynaphthalene-3,6-disulfonate; hxsb, 1,8-bis((2-pyridylmethyl-phenyl)azo)-8-hydroxynaphthalene-3,6-disulfonate; hxsb, 1,8-bis((2-pyridylmethyl-phenyl)azo)-8-hydroxynaphthalene-3,6-disulfonate; hxsb, 1,8-bis((2-pyridylmethyl-phenyl)azo)-8-hydroxynaphthalene-3,6-disulfonate; hxsb, 1,8-bis((2-pyridylmethyl-phenyl-phenyl)azo)-8-hydroxynaphthalene-3,6-disulfonate; hxsb, 1,8-bis((2-pyridylmethyl-phenyl ene)amino)-3,6-diazaoctane; ibn, H₂NC(CH₃)₂CH₂NH₂; H₂salen, bis(salicylidene)ethylenediamine; IHP, inositol hexaphosphate; im, imidazole; IMP, inosine 5'-monophosphate; In, indicator; Ino, inosine; IS, inner sphere (electron transfer); isn, isonicotinamide; isoq, isoquinoline; L, meso-5,7,7,12,14,14-hexaamethyl-1,4,8,11-tetraazacyclotetradecane; LdRu^{II}Ru^{III}, (μ -2,6-dithiaspiro[3,3]hep-

Table 1. (Continued)

tane)decaamminediruthenium(II,III) hexafluorophosphate; LF, ligand field; Ln, a lanthanide ion; lut, 3,5-lutidine; Ma, 3,7,11 $tribenzyl-3,7,11,17-tetra azabicyclo [11.3.1] heptadeca-1, (17),13,15-triene; MA^+, N-methylacridinium; Mb, myoglobin (subscripts S, properties of the contraction of the contraction$ H, D refer to sperm whale, horse, and dog myoglobin respectively); MCH, methylcyclohexane; MCPH, monochelated protoheme; Me, methyl; 3Mebsb, $(C_5H_4N)CPhN(3-MeC_6H_4)$; Me₂bsb, $(C_5H_4N)CPhN(3,4-Me_2C_6H_3)$; MeCy, methylcyclohexane; Medpt, $H_2N(CH_2)_3NMe(CH_2)_3NH_2$; Medtra, N-methylethylenediaminetriacetate; MeIm, 1-methylimidazole; 3-MP, 3-methylpentane; Me_5 dien, 1,1,4,7,7-pentamethyl-dien; Medpt, Medpt, Medpt, Me_5 dien, Me_7 0,3 Me_7 1,4-MeObsb, MeObsb, MeObsbpholinoethanesulfonic acid; met, L-methionine anion; 1-MeU, 1-methyluracil; Mhr, myohemerythrin; MLCT, metal-to-ligand charge transfer; MNZ, metronidazole; MOPS, 3-morpholinopropanesulfonic acid; MPI, p-methylphenyl isocyanide; N₄, 2,3,9,10-tetraphenyl-tetraacetate; PFe, ferric porphyrin; Ph, phenyl; PHDME, protoheme dimethylester; phdta, 4- o-phenylendiamine-N,N,N,Ntetraacetate; phen, 1,10-phenanthroline; pip, piperidine; piv, pivalate ion; PMMA, poly(methyl methacrylate) polymer; P_{In} linear phosphate oligomer, polymerization degree n; P_{nm} , cyclic phosphate oligomer, polymerization degree n; P_{nm} , cyclic phosphate oligomer, polymerization degree n; P_{nm} , cyclic phosphate oligomer, polymerization degree n; P_{nm} , triphenylphosphine; P_{nm} , propyl; P_{nm}^{i} , isopropyl; ptsa, p_{nm} -toluenesulfonic acid; py, pyridine; pyBimH, 1-(CNNHC₆H₄)(C₅H₄N); pyimH, 1-(CNNHC₂H₂)(C₅H₄N); py-SO₃, NC₅H₄SO₃-3; pz, pyrazine; pzc, pyrazinecarboxylate; Qui, quinoline; RB₁₂, alkylcobalamin; R₁-en, (1R,2R,4S)-exo-2-(aminomethyl)-2-amino-7-oxabicyclo[2.2.1]heptane; S, solvent; Sacac, thioacetylacetone; SA₁pNA, succinyl-L-alanine p-nitroanilide; SA₂pNA, succinyl-L-alanine p-nitroanilide; SA_3pNA , succinyl-L-alanyl L-alanyl L-alanine p-nitroanilide; SarH, sarcosine; Samethylammoniumphenyl)porphine; taud, 3,6,9-triazaundecanedioate; TCA, 2,6,9,10-tetracyanoanthracene; tc-acac, 3-thiocyanato-2,4-pentanedione; tc-bzac, 2-thiocyanato-1-phenyl-1,3-butanedione; TCE, *sym*-tetrachloroethane; TCNE, tetracyanoethene; TEMPO, 2,2,6,6-tetramethylpiperidine 1-oxide; terpy, 2,2':6',2"-terpyridine; 2,3,2-tet, 1,9-diamino-3,7-diazanone; 3,2,3-tet, 4,7-diaza-1,10decanediamine; tetren, $H_2N(CH_2)_2NH(CH_2)_2NH(CH_2)_2NH(CH_2)NH_2$; tfac, 1,1,1-trifluoro-2,4-pentanedione; TFBA, trifluorobenzoylacetone; tfbzac, 4,4,4-trifluoro-1-phenyl-1,1-butanedione; TH, triflic acid; THF, tetrahydrofuran; TMB, N,N,N,N-tetramethylbenzidine; tmc, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane; TMCH, 3,3,5,5-tetramethylcyclohexanone; tmd, 1,3-propanediamine; tmen, 2,3-diamino-2,3-dimethylbutane; TMP, trimethyl phosphate; 2,2,4-TMP, 2,2,4-trimethylpentane; TMPA, (MeO)₃PO; TMPNO, 2,2,6,6-tetramethylpiperidinyloxyl radical; TMPP, *meso*-tetrakis(4-*N*-methylpyridyl)porphine; tmtu, tetramethylthiourea; TMS, tetramethylsilane; TMU, tetramethylurea; tn, trimethylenediamine; tpchxn, tetrakis(2-pyridylmethyl)trans-1,2-cyclohexanediamine; tpmbn, μ -CH₂(CH₃)CH(CH₃)[μ -1-N(CH₂)₂(C₅H₄N) $_2$]₂; TPP, 5,10,15,20-tetraphenylporphyrin; tppn, μ -CH₂CH(CH₃)[μ -1-N(CH₂)₂(C₅H₄N)₂]₂; TPPS, meso-tetrakis(p-sulfonatophenyl)porphinato; 2,3-tri, NH₂(CH₂)₃NH(CH₂)₃NH₂; tren, tris-(2-aminoethyl)amine; trien, 1,8-diamino-3,6-diazaoctane; triflic, trifluoromethanesulfonic acid; tris, tris(hydroxymethyl)aminomethane; tta, 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione; TU, thiourea.

limited number of laboratories. In this section the extensive variety of metal centers, noncoordinating ligands, and solvents leads naturally to a discussion of individual systems proceeding mostly in terms of an order arranged by increasing magnitude of the atomic number of the metal center rather than by mechanistic similarity.

In a study employing six different solvents coordinating to the Be(II) ion (entries 1–6), the exchange of five could be monitored by proton NMR, while exchange of H_2O was followed using ^{17}O NMR spectroscopy. The kinetics were followed in the presence of a noncoordinating diluent CD_3NO_2 , and a two-term rate law described the exchange process. The results could be analyzed to conclude that the series is subject to a sterically controlled mechanistic changeover from an A mechanism for the smallest solvent water to a D mechanism for the most bulky tetramethyl- and dimethylpropyleneurea, with the other three solvents exhibiting small negative ΔV^{\ddagger} values between these extremes.

Attention has been directed to solvent exchange on titanium(III) and titanium(IV) species $^{61-63}$ (entries 8-12). Water exchanges on hexaaqua titanium(III) by an A mechanism, and the volume of activation is close to that calculated on a theoretical basis for such a mechanism, 61 whereas DMF exchanges on Ti-(DMF) $_6^{3+}$ less associatively and therefore by an $\rm I_a$ mechanism. 63 This latter result allows the observation that there is a mechanistic shift for solvent exchange on first row transition metal ions in oxidation state three, since exchange becomes progressively less associative as the radius becomes gener-

ally smaller as the atomic number of the metal increases. Both axial and equatorial exchange of DMSO from TiO(DMSO)₅²⁺ occur with an expanded transition state;⁶² the faster axial exchange is proposed to proceed by a D mechanism, while the loss of an equatorial DMSO is in concert with an axial to equatorial coordinated solvent migration. Exchange of solvent (S) on *cis*-TiCl₄·2S complexes (entries 13–15) proceeds by a D mechanism⁶⁴ (a striking contrast to similar reactions with zirconium complexes^{82,83} (vide infra) in which bond making is occurring as the transition state is formed).

The exchange of DMSO on V(DMSO)₆³⁺ (entry 16) proceeds by an I_a mechanism⁶⁵ as for exchange of H_2O on the same metal ion,³⁹⁰ and as mentioned earlier there is a pattern of progressively less associative exchange reactions across the first row of transition trivalent metal ions (where measurable); for example, the exchange of trimethyl phosphate (TMP) on Sc-(TMP)₆³⁺ (entry 7) has been described as occurring by a limiting A mechanism, or by a mechanism near to a limiting A. This is related to the larger radius of the first transition metal.⁶⁰ Indeed this trend is a general observation for solvent exchange on divalent metal ions too, unless special steric effects impose differences (see also below). However, it should be emphasized that the only solvated trivalent metal ion for which a distinctly positive ΔV^{\dagger} has been obtained is Ga(III), a main group element. The exchange of water on Ga(H₂O)₅(OH)²⁺ is more dissociatively activated than is the hexaaqua Ga(III) ion (entries 46 and 47).81 In contrast to the exchange of the smaller H₂O, CH₃CN and CH₃OH on hexasolvated Mn(II) ions $(\Delta V^{\ddagger} \text{ negative})^{390-393}$ the exchange of acetic acid has a modestly positive ΔV^{\dagger} value in two different media (entries 22 and 23),⁷⁰ and therefore is in common with the exchange of DMF on Mn- $(DMF)_6^{2+}$ (entries 18-20). 67-69 It is argued that the relative bulkiness of the latter two ligands is responsible for the less associative and even slightly dissociative interchange processes on their part. This steric feature is demonstrated markedly when the thio analogue of DMF is the exchanging solvent since the volume of activation is 8-10 cm³ mol⁻¹ more positive in value for exchange on Mn(II) and Ni(II)⁶⁹ (entries 21, 33, and 34) than for exchange of DMF on the same ions (entries 18-20). $^{67-69}$ Attempts to correlate ΔV^{\dagger} with the partial molar volumes of the leaving groups were somewhat thwarted by the finding of an almost constant ΔV^{\dagger} for several exchanging (on Ni(II)) nitriles (RCN) of considerable variation in magnitude of the R moiety (entries 37– 42).⁷⁷ This study highlighted the lack of match between ΔV^{\dagger} and ΔS^{\dagger} . A parallel between these two parameters could be expected on a superficial basis, and is noted in some cases. All the nitriles exchange with a ΔV^{\dagger} that is distinctly positive, ca. 12 cm³ mol⁻¹, but the ΔS^{\ddagger} values vary between -30 and +4 J mol⁻¹ K^{-1} . The interactions of the departing, exchanging nitriles with like molecules of the second coordination sphere are cited as the cause of the negative entropies of activation.

Volumes of activation are close to zero for exchange of ethylenediamine on the tris en complex ions of Mn-(II), Fe(II), and Co(II) but a value of ± 11.4 cm³ mol⁻¹ was recorded for the corresponding nickel species (entries 24, 25, 30, and 43). 71,78 In the latter case the increase in volume upon reaching the transition state was proposed to be followed by the formation of an intermediate in which two en molecules are each bonded to the $Ni(en)_2^{2+}$ species in a monodentate mode. On the basis of an analysis of the rate constants, thermal activation parameters, the volumes of activation, the estimated ring opening and closure rates, and the corresponding results for the exchange of the similar ligand 1,3-diaminopropane,⁷⁴ which yields three six-membered rings on Co(II) (entry 31), it was concluded that effects termed the kinetic chelate effect and the chelate strain effect could be invoked to explain the overall findings. Efforts to explore the effect of a nonexchanging multidentate ligand on exchange of water (entries 26 and 27) on Fe(III) have been reported;72,73 a dissociative interchange mechanism is found for both H₂O and DMF exchange.

Study of the exchange of solvent on hexasolvated Cu(II) is complicated by the consequences of Jahn—Teller distortion. It prevails that the rate of inversion is rapid compared with the rate of DMF exchange and the latter (entry 44) is a dissociative interchange process. ⁷⁹ Lability of coordinated water can be drastically affected by the geometry of a copper(II) complex ion, as witnessed by the lowering by 3 orders of magnitude of the water exchange rate constant on the trigonal-bipyramidal $Cu(tren)H_2O^{2+}$ ion from that for the hexaqua $Cu(H_2O)_6^{2+}$ ion. The water ex-

change on the tren complex ion (entry 45) proceeds by an associative interchange mechanism.⁸⁰

Ligand exchange on tetrachloro zirconium complexes (entry 48) in a noncoordinating solvent is characterized by a strongly associative mechanism reflecting the accessibility to the incoming ligand with increasing radius^{82,83} (cf. titanium complexes, 64 entries 13-15).

The possible compensating effects of several contributing volume changes in the exchange of acetyl acetonate on a molybdenum—oxo complex (entry 49), create difficulty in interpreting the zero volume of activation obtained. Further this study points to the complexities arising in exchange studies of bidentate ligands. Clearly the analysis of any measured volume changes for kinetics of exchange of higher dentate ligands would probably be equally or more complicated.

Hexasolvated ruthenium(II) complexes of either H₂O or CH₃CN exchange solvent by an almost pure interchange mechanism (entries 51 and 54).86 The same holds for water exchange on Ru(H₂O)₅(OH)²⁺ (entry 53), whereas there is significant associative character in the exchange of water on Ru(H₂O)₆³⁺ (entry 52), and moderate associative interchange of the water exchange on Ru(NH₃)₅H₂O³⁺ (entry 50).⁸⁵ The structure of the nonexchanging component of the complex ion has important consequences: this is manifest in the exchange of CH₃CN on ruthenium complexes (entries 56 and 57) in which the benzene complex exchanges coordinated CH₃CN with solvent by an interchange mechanism but the latter complex (entry 57) undergoes exchange by a fully dissociative mechanism.⁸⁸ The aqueous analogue (entry 55) exchanges water by a mechanism in which bond breaking is only slightly more significant than bond making.87

Water exchange on aqua rhodium(III) has been determined as a function of acid concentration, 89 allowing the kinetic and activation parameters for the water exchange on both the hexaaqua- and the monohydroxopentaaquarhodium(III) species (entries 59 and 60) to be determined. The results imply an associative interchange mechanism for the former ion and an interchange mechanism with a slight dissociative character for the $Rh(H_2O)_5(OH)^{2+}$ species which is strongly labilized by the presence of the OH group. The reaction volume $(-0.2\pm0.5~{\rm cm}^3~{\rm mol}^{-1})$ for deprotonation of the hexaaquarhodium(III) ion, obtained potentiometrically, was also reported.

Water exchange on the $Cp^*Rh(H_2O)_3^{2+}$ complex ion (entry 61) is modestly dissociative in interchange character, 90 as is water exchange on the corresponding iridium species (entry 93). 90 The properties and reactivities of palladium and platinum complexes are frequently compared and contrasted. For a wide variety of nonexchanging ligands on the central palladium(II) ion (entries 63–66) the solvent exchange is associative. $^{92-94}$ In cases where the solvents used are common the exchange is often more markedly associative in the case of Pt complexes than for Pd complexes (entries 67–73 and 96–99), 94,95 undoubtedly resulting from a radius increase down the group.

Complexes of gadolinium(III) are prominent in the search for improved magnetic resonance imaging materials. Investigating the water exchange kinetics on such complexes is an integral component of determining their potential efficacy through measurement of properties such as the relaxivity. 96 The design of newer agents may in part be based on the extent to which steric crowding by noncoordinating ligands of the exchanging water molecule may enhance the degree of dissociative mechanistic character. The complexes studied thus far (entries 74-79), exchange water by an interchange, a dissociative interchange or a dissociative mechanism. 96-99 Water exchange on fully hydrated lanthanide ions (entries 80, 82, 84, 85, and 87) is characterized uniformly by an associative interchange mechanism. 100,101 Upon complexing the ions with propylenediamine tetraacetic acid, water exchange is dramatically decelerated across the series (entries 81, 83, 86, 88, and 89) accompanied by a change of mechanism from an associative to a dissociative one.102

An examination of the kinetics of exchange of H_2O or CH_3CN on a *trans*-Os complex (entries 91 and 92)¹⁰³ led to the conclusion that solvent exchange occurs by a dissociative or dissociative interchange mechanism. In this report other complementary results (references *loc. cit.* therein) were evaluated and interpreted to show that ligand substitution on such species occurs with rate-limiting loss of a coordinated solvent molecule.

Some final examples in this section illustrate the variety of solvent exchange studies reported over this period: Ir(H₂O)₆³⁺ exchanges water with solvent extremely slowly, by an I_a mechanism, ¹⁰⁴ while the exchange on the deprotonated analogue occurs via an I_d mechanism (entries 94 and 95). Whether DMSO is coordinated through oxygen or sulfur the exchange on Pt(DMSO)₄²⁺ is associatively activated¹⁰⁵ (entries 100 and 101), whereas exchange of Me₂S or DMSO on the platinum complexes of entries 102-104 is dissociatively activated, 106 suggesting that the presence of platinum to carbon bonding has a significant effect in changing the activation mode. The oxo uranium complexes (entries 105 and 106) exchange the equatorial ligands with two different mechanisms, TMPA by a D mechanism and HMPA by an A mechanism.¹⁰⁷ The axial oxo ligands do not exchange on the NMR spectroscopy time scale.

B. Ligand Substitution Reactions

This is a subheading forming an umbrella under which many variants of ligand substitution reactions are grouped. More than 400 entries are contained in this section, reflecting an abundance of investigations from several laboratories. The substitution can be of one ligand for another where neither is the solvent (ligand for ligand substitution), it can be substitution where one or more ligands attached to a metal center is/are replaced by one or more solvent molecules (for example aquation, solvolysis, base hydrolysis; it is recognized that these reactions may also be classified as metal complex dissociation reactions), or it can be a reaction of a solvated metal ion in which one or more coordinated solvent mol-

ecules is/are replaced by one or more other ligands (complex formation or anation). Thus the products and the reactants are different unlike the case for solvent exchange reactions. Therefore, in a volume sense these reactions have an additional component of considerable interest, since the partial molar volumes of reactants and products will differ except by the (unlikely) coincidence that they would be identical. Thus, as with all other reactions from this point in the discussion, except for electron selfexchange reactions, the volume profile, if available, will consist of volumes of activation in both directions, and the reaction volume. The latter may be obtained directly or indirectly depending on the kinetic accessibility and other properties of the system. In favorable examples, the volume profile can be developed on an absolute scale rather than only on a relative volume basis, when direct measurements of densities of reactants and products can be made. This narrative section will, when appropriate, focus on some examples of particular subclasses of ligand substitution reactions but the table follows the order of the atomic number of the central metal and the reaction entries in the table are not further divided into subclassifications. When a literature report contains results that fit more than one subcategory, for example a reversible complex formation/aquation reaction then these results will be considered together in one point in the narrative. The subclassifications are base hydrolysis, aquation and solvolysis, complex formation reactions, and ligand for ligand substitution.

a. Base Hydrolysis

Hydrolysis of chromium(III) pentaammine complexes118 in which the unhydrolyzed ligands are of higher dentate than one and the sixth, departing ligand is Cl⁻ and is characterized by large positive ΔV^{\dagger} values (entries 141–145). The reaction volume for the preequilibrium step that involves the formation of the conjugate base species could be estimated to be 22 cm³ mol⁻¹, giving rise to ΔV^{\dagger} values for the rate determining ligand substitution step ranging from -5 to +13 cm³ mol⁻¹, signifying a mechanistic changeover from I_a to I_d or D throughout the series for substitution on the conjugate base species. The outcome of the competition between the Cr-Cl bond breakage and the addition of solvent is controlled by the nature of the nonsubstituting ligands to the extent that when the ligands cause steric hindrance a more dissociative mechanism is promoted. The results¹²¹ for base hydrolysis of some halopentaammine and related complexes of Cr(III) (entries 160– 163) in some of which the nonhydrolyzing ligands are aliphatic amines also indicate an associative interchange is occurring, underlining the difference, albeit not major from similar reactions for cobalt(III) complexes. 120a

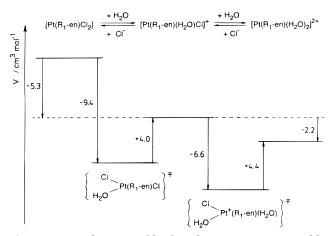
Several studies have been reported of base hydrolysis on iron(II) tris diimine complexes and a related complex (entries 202, 273–276, 279–301, and 308–317)^{136,149,150,153} in aqueous medium and in mixed solvents. The kinetics are indicative of an associative nucleophilic attack, and the positive volumes of

activation have been interpreted as a negative intrinsic component being overshadowed by a large electrostriction decrease due to the desolvating hydroxide ion.³⁹⁴ The values of ΔV^{\dagger} in water are within a small range, supporting this essentially common contribution, independent of the complex ion. The influence of the complex ion, in terms of the hydrophobic/hydrophilic balance of the periphery having contact with the solvent, on the values of ΔV^{\dagger} obtained, has been probed by determining ΔV^{\dagger} in mixed solvents. In addition, the transfer chemical potentials (for transfer from water to mixed solvents of the same composition), of both reactant species and for the transition state have been determined. 395-397 These potentials provide a measure of the change of solvation of species with change in the solvating medium, and therefore can be correlated with variations in ΔV^{\dagger} with solvent composition. Changes in the latter can be guite dramatic and vary considerably with the nature of the cosolvent. For example, the value of +16.7 cm³ mol⁻¹ for hydrolysis of the Fe-(II) complex containing three small gmi ligands 150 is reduced to about one-quarter of that value by the presence respectively of 80%, 50%, 60%, and 50% (vol %) methanol, ethanol, 2-propanol, and tert-butyl alcohol. For the iron(II) complex of the hexadentate hxsb ligand, similar but more marked trends are observed with ΔV^{\dagger} varying from +13 cm³ mol⁻¹ to small negative values in similar solvent mixtures. 153 These trends can be understood in terms of the solvation differences in species and by consideration of the characteristics of the solvent mixtures which possess typically aqueous properties but experience water structure making and breaking at different mole fraction points depending on the alkyl moiety of the alcohol. However, the overall complexity of such systems and the need to establish carefully the rate law and products under all conditions precludes a general application of the mixed-solvent approach, although in appropriately chosen cases instructive findings can be acquired.

The kinetics and mechanism of base hydrolysis of Co(III) pentaammine complexes have fascinated for decades, and have been compared with and contrasted to those of corresponding reactions of Cr(III) complexes. The conjugate base mechanism gives rise to complications, but not insurmountable ones, in interpretation of measured ΔV^{\dagger} values. The distinctly positive values (entries 352-368) can be explained¹⁶³ by charge neutralization and release of a solvent molecule in the preequilibrium conjugate base formation step and ligand dissociation in the rate-limiting step. Although a wide selection of the nonhydrolyzing ligands was employed the results indicated a relative insensitivity to their nature. Overall the results are compatible within the accepted S_N1CB mechanism for these reactions. Volume profiles were developed. Other examples of base hydrolysis in which the spectator ligand is a macrocycle^{117,156} (entries 321, 325, and 327) illustrate mechanistic similarity between the reactions of the Cr(III) (entry 140)¹¹⁷ and Co(III) complexes, whereas the corresponding rhodium(III) complex¹¹⁷ (entry 477) has a less positive value of ΔV^{\dagger} and was accordingly

assigned to a limiting case of an interchange conjugate base mechanism.

b. Aquation and Solvolysis


Empirical volumes of activation have been obtained for the cyclic and linear condensed phosphate oligomers, with polymerization degrees of six and eight, undergoing hydrolysis in acidic solution (entries 117–120). Each reaction, regarded as a nucleophilic attack by a water molecule is characterized by a small decrease in volume upon reaching the transition state. This is explained by proposing that a hydrating water molecule, loosely bound in the initial state becomes more tightly bound to the phosphorus atom in the transition state.

A parallel has been pointed out between the aquation reactions of the V(III) (entry 122)¹¹¹ and Fe(III) pentaaqua thiocyanate¹⁵² (entry 302) complex ions in that both are characterized by ΔV^{\ddagger} values of $-17~\rm cm^3~\rm mol^{-1}$, suggesting a mechanistic similarity between the two systems and difference from aquation reactions of Cr(III) and Co(III) pentaammine complexes.

The aquation in mildly acidic medium of chromium(III) pentaammine complexes (entries 149–159) containing neutral leaving groups is characterized by small negative $\Delta\, V^{\!\dagger}$ values which do not readily relate to the size of the leaving group. 120 An I_a mechanism distinguishes the intimate mechanism from that (I_d) for analogous cobalt(III) complexes.

Solvolysis of pentacyano iron(III) nitrite¹⁴⁰ (entries 213–217) has been studied in several solvents, and the rate constants for replacement of nitrite correlated with the electron donor ability of the solvent. It was concluded on the basis of the values of ΔV^{\ddagger} and other considerations that the solvents interact with the cyanide ligands and increase the electron density on the metal center and contribute to inducing a dissociative mechanism.

Cobalt(III) pentaamine complexes (entries 382-395) in which the sixth position is occupied by carboxylic acids have also been the subject of an aquation (in acidic solution) kinetics study. 166 Values of ΔV^{\dagger} , not unexpectedly, vary according to whether the departing species is the neutral acid or the anionic form. In the latter case there is charge separation and enhanced electrostriction, resulting in more negative ΔV^{\dagger} values than when the unionized acid departs. For both cases an interchange mechanism was proposed. The solvolysis of a dichlorobisethylethylenediamine Co(III) complex (entries 374-379) has been monitored in water and water/ tert-butyl alcohol mixtures. 164 The solvolysis of the second chloro ligand can be suppressed by employing a medium of pH less than 3. The variation in ΔV with solvent composition is small; however, the nature of the variation and the fact that the ratedetermining step involves the extension of the cobaltchloro bond in the transition state (an I_d mechanism) prompted the authors to comment on the similarity to the S_N1 mechanism for the solvolysis of *tert*-butyl chloride (extension of a C-Cl bond in the transition state) in the same solvent mixtures. Aquation studies¹⁶⁰⁻¹⁶² on this and related dichloro complex ions and $Co(en)_2(NH_3)X^{2+}$ where X = Br, Cl, or NO_3

Figure 1. Volume profile for the two-step reversible aquation of $[Pt-(R_1en)Cl_2]$. First step is at 311.3 K, and the second step, at 279.0 K. (From ref 205.)

yield reaction volumes and activation volumes that led to the conclusion that the entering water and leaving halide ion participate almost equally in the transition state in the ligand interchange process (entries 334-350). It was also noted that among the latter group of complexes ΔV^{\dagger} was essentially temperature independent.

Solvolysis of a palladium(II) complex of pentamethylated dien and one pyridine ligand 193 by six different solvents (entries 532-537) proceeds in each case by an associative process with no immediately obvious correlation between $\Delta\,V^{\!\!\!+}$ and any property of the solvents. The aquation and the reverse process of anation of $rac\text{-Pt}(R_1\text{-en})\text{Cl}_2$ (entries 581-584) occur in two steps each possessing transition states of smaller volume than either reactant or product, 205 as illustrated in Figure 1, with the consequence of an I_a mechanism for both steps in the forward direction.

c. Complex Formation Reactions

The reaction under entry 107 is believed to be the first report¹⁰⁸ of volume of activation and reaction volume data for ligand binding and ligand dissociation from an aqua beryllium ion, and therefore is described in some detail. The keto oxygen of the bidentate ligand is thought to bind first and the subsequent (fast) chelate ring closure reaction is accompanied by release of a proton. The first step, based on a negative ΔV^{\dagger} value, proceeds by an associative mechanism. Since the reaction volume for proton dissociation from the ligand has been determined to be $-8.2 \text{ cm}^3 \text{ mol}^{-1}$, this allows the reaction volume for the reaction of the deprotonated ligand with the Be(II) aqua ion to form the monopositively charged aqua Be(ipt)⁺ species to be calculated as $+13.5 \text{ cm}^3 \text{ mol}^{-1}$. In the reverse direction the first step is the preequilibrium protonation of the latter species to form the dechelated species with only one of the ligand oxygen atoms bonded to the beryllium atom. It is argued that if this species has the same volume as the original separated reactants (for the forward reaction), then the activation volume for the rate-determining step of the reverse reaction is also negative and indicative of associative activation.

There are many interesting features¹⁰⁹ in the reactions of entries 108–110. The first two reactions

are accompanied by a change in coordination number on boron, and therefore, the coordination geometry. The trigonal to tetrahedral conversion on $B\ (sp^2\ to\ sp^3\ hybridization)$ results in an extension of the B-O bond length, but this contribution is overshadowed by the presence of the incoming ligand in an associative mode of activation. The reverse reactions are also of associative mechanistic character. The third ligand, a tridentate, is considered to bind with the final chelate ring closure as the rate-determining step.

In the process of development of a high-pressure stopped-flow fluorometer 42 the reaction of Mg $^{2+}$ ions with 8-hydroxyquinoline (entries 111-116) was examined as a suitable standard kinetics test for the fluorescence mode and compared with the same reaction in a stopped-flow spectrophotometer (absorbance mode). In an excess of metal ion only the 1:1 complex is formed and the second-order rate constants at pH of 8.0 and 278 K are $3.81\times 10^3~\text{mol}^{-1}~\text{dm}^3~\text{s}^{-1}$ (absorbance) and $3.69\times 10^3~\text{mol}^{-1}~\text{dm}^3~\text{s}^{-1}$ (fluorometer) and experimental $\Delta\,V^{\ddagger}$ values of $-3.1\pm 0.4~\text{and} -3.6\pm 0.5~\text{cm}^3~\text{mol}^{-1}$, respectively were obtained. Thus this reaction system is very well suited for use as a standard reaction.

Formation of the SCN $^-$ complex of V(III) in both water and DMSO solutions (entries 121-125) occurs by an I_a mechanism, which in the case of aqueous solution is regarded as a stronger associative activation than for the corresponding V(II) system. The reaction volumes are distinctly positive which can be understood in terms of the release of electrostricted solvent upon charge neutralization. The associative interchange mechanism is consistent with the information afforded from an earlier water exchange mechanistic study. 397 There is a mechanistic changeover from I_a to I_d as the first row of transition elements, in oxidation state three, is traversed to the representative Ga^{3+} ion.

Entry 194 and entries 260 and 318 may be grouped together. 132 Introduction of the Et₂DTC- ligand to DMF solvated Mn(II), Fe(II), and Co(II) ions follows a dissociatively activated mechanism, by virtue of the strongly positive activation volumes. Indeed the values led to the suggestion that the DMF solvates are sterically bulky so that an associative mode of activation is not applicable even for the larger Mn cation. This is in contrast to solvent exchange on these cations for smaller solvent molecules where there is a mechanistic changeover from I_a to I_d across the first row of transition metals as noted in section 2.A. However, the trend in values here indicates a possible shift from I_d for Mn to a D mechanism for reaction of the other two cations. Formation and dissociation of the Pada complex on the DMF Fe(II) solvate (entries 261 and 262) also proceed by dissociative mechanisms. 132

Although the kinetics at elevated pressures of formation of Fe(H₂O)₅NCS²⁺ and the corresponding deprotonated species, Fe(H₂O)₄(OH)NCS⁺ have been studied previously they were reinvestigated (entries 302 and 303) to resolve discrepancies in the literature. The latest values of $\Delta \mathit{V}^{\ddagger}$ are -5.7 and +9.0 cm³ mol $^{-1}$ respectively for formation of the two

species and reflect I_a and I_d mechanisms. See also the discussion in the aquation section regarding the comparison of the aquation reactions of pentaaqua V(III) and Fe(III) thiocyanate complexes. In the reaction of Fe(III)aq with HN $_3$ /N $_3$ – (entries 304–307) two pathways predominate: Fe(H $_2$ O) $_5$ (OH) $^{2+}$ reacting with N $_3$ – and with HN $_3$. The respective values of Δ V^{\dagger} are +12.9 and +6.8 cm³ mol $^{-1}$, 152 both of which denoted I_d mechanisms to be operative.

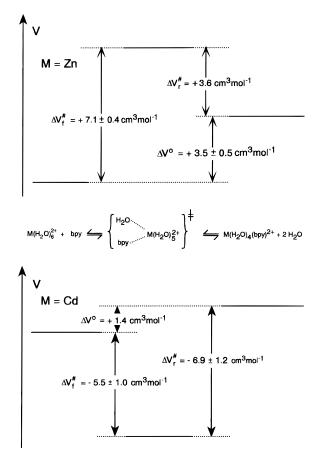
The nucleophilicity of the ligand effects mechanistic control for reactions of the ClO_2^- (entry 197), 134 N_3^- (entries 304-307), 152 and NCS^- (entries 302 and 303) ions with aqua iron(III) ions. The overall reaction is described as conjugate acid/conjugate base. The first two ions react by an I_d mechanism and the last by an I_a mechanism. A reaction volume of $+7.8~cm^3$ mol $^{-1}$ has been determined for the reaction shown in entry 195. As described 133 this value together with other data allowed the calculation of the activation volume for entry 196. This in turn it was argued, confirmed that the ligand reacts with aqua iron(III) by an I_a mechanism. A reaction volume ($+2.8~cm^3$ mol $^{-1}$) was reported for protonation of Hipt.

The stepwise dissociation (by aquation) and formation of Ah complexes of Fe(III) are controlled by the presence of OH⁻ or Ah⁻ in the coordination sphere (entries 263–270). Analysis of the activation volumes led to the conclusion that the catalyzed hydrolysis of the tris Ah complex undergoes a mechanistic changeover from I_a to I to I_d for the successive steps, a sequence that is reversed for reaction in the reverse direction. The reaction of dfb in tetraprotonated form with the hexaaquairon(II) species is accelerated by pressure, whereas when dfb in the same form reacts with the deprotonated form of the iron species the reaction is retarded by pressure (entries 271 and 272) resulting in volumes of activation of opposite sign, suggesting that the two reactions proceed by I_a and I_d mechanisms, respectively. 149 Under the experimental conditions H_4dfb binds only as a bidentate ligand.

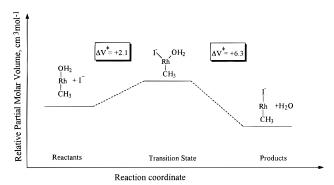
The complications of ion pairing and electrostriction changes were discussed in a study 162 of the anation reactions of cis-Co(en) $_2$ (H $_2$ O) $_2$ ³⁺ by sulfate ions or by selenate ions (entries 351-354). However, following due consideration of these features it was possible to assign dissociative mechanisms to these reactions as well as for the reverse solvolysis reactions and furthermore for the trans to cis isomerization 162 of trans-Co(en) $_2$ (H $_2$ O)OSeO $_2$ H 2 + (entry 846, see also section 2.F).

Reaction volumes for formation of complexes of nickel(II) with either anionic or neutral ligands have been determined (entries 413–420).¹⁷¹ In general the values are more positive as the extent of charge neutralization increases. However, in addition to electrostriction changes a detailed explanation involved the difference between oxygen and nitrogen donors, contraction of donor atoms in the first coordination sphere, expansion due to metal—water bond elongation caused by the presence of bound amine-(s) or carboxylate groups, and what is termed the volume chelate effect which envisages a different

packing by multidentate ligands vis a vis monodentate ligands.


Expectation was fulfilled when the activation volumes for reaction of 2-chloro-1,10-phenanthroline with the hexaaqua ions of Co(II) (entries 319 and 320), 154 Ni(II) (entries 411 and 412), 154 and Cu(II) (entries 430 and 431) 172 were determined, since their anticipated positive values indicated an I_d mechanism as had previously been invoked for the corresponding reaction of hexaaqua Zn(II) ions. 172

Reaction volumes obtained for the formation of mono, bis, and tris phen complexes of Cu(II) and for the formation of both the phen and bpy mono, bis, and tris complexes of Zn(II) (entries 432–440) show¹⁷³ the general feature of successive replacement of coordinated water giving rise to progressively smaller positive volume changes. This was explained by suggesting that the substitution of electrostricted coordinated water by neutral ligands is accompanied by a volume increase but that the solvent release proceeds only as far as the second coordination sphere. It should be noted that the volume changes for comparable systems do not exhibit a particularly systematic quantitative pattern.


The formation of the mono bpy complexes of Zn-(II) and Cd(II) agua ions (entries 443 and 555)^{166,174} provides excellent straightforward examples of both size influence on mechanistic determination and of complementariness of activation volume and reaction volume measurements. An improved access to the coordinated solvent by the ligand in the outer sphere permits an I_a mechanism for formation of Cd(bpy)-(H₂O)₄²⁺, a process not possible one period higher in formation of the analogous Zn(II) complex which is formed from a smaller hexaaqua ion, resulting in an I_d mechanism. Figure 2 displays the volume profiles for these two complexes. The approach used in estimating the volume change in forming the outersphere complex has been presented earlier. The mechanism proposed for the zinc complex formation is entirely consistent with recent calculations for water exchange on $Zn(H_2O)_6^{2+}$ reported earlier in this

A series of ligands has been chosen for displacing the water in both Ru(edta)(H_2O)⁻ and in Ru(hedta)-(H_2O)⁻ (entries 460-472):^{179,180} the outcome is a markedly rapid substitution in the former case which was suggested to be due to distortion of the metalligand bonds and labilization of the coordinated water molecule arising from H-bonding between the free carboxylate and the coordinated water. Both sets of reactions proceed by an associatively activated substitution process based on the interpretation of the ΔV^{\dagger} values.

An interesting illustration of the finesse of high-pressure kinetics vis a vis variable-temperature kinetics is in the substitution of bound water in *trans*-rhodoximes by various nucleophiles (entries 486–489). Whether the organic moiety is varied or not for a given nucleophile all reactions studied were characterized by moderately negative entropies of activation. However, the values of ΔV^{\dagger} for the same reactions are positive for the faster reactions when the R group is CH_3 , but become negative for slower

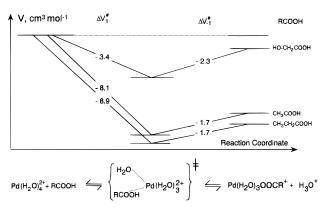


Figure 2. Volume profiles for formation and dissociation of $M(H_2O)_4(bpy)^{2+}$ complexes (M = Zn, Cd). (From refs 166 and 174.)

Figure 3. Volume profile for the nucleophilic substitution of $CH_3Rh(H_2O)$ by I^- . (From ref 183.)

substitutions ($R = CH_2CF_3$). Thus the methyl group is responsible for a bigger trans labilization effect than are either CH₂Cl or CH₂CF₃. Thus the former effect gives rise to an I_d substitution mechanism, whereas the weaker donating groups favor a more associative interchange mechanism. In the case of iodide ion as the nucleophile, the reverse reaction could also be studied permitting the development of a volume profile, (Figure 3) which displays the values from the table which are indicative of an I_d mechanism. The larger value of ΔV^{\dagger} for the reverse reaction is probably a consequence of the large partial molar volume of the departing I-, and the electrostriction effect on the complex due to the charged ligand. The additional potential mechanistic discrimination power of the pressure variable in kinetic investigations has

Figure 4. Volume profile for complex formation between $Pd(H_2O)_4^{2+}$ and RCOOH (R = CH₃, CH₃CH₂, CH₂OH). (From ref 191.)

been aptly exploited in *trans*-rhodoxime substitution kinetics.

The formation of several thioether and related complexes from Pd(II) and Pt(II) aqua ions proceeds by an I_a mechanism. The ΔV^{\dagger} values for these reactions and the corresponding solvent exchange reactions (vide supra) were said to be of comparable magnitude, and it was reported that there was no obvious correlation between ΔV^{\dagger} and the size or steric requirement of the ligands or the steric encumbrance of the first coordination sphere of the complex (entries 498-501).186 The formation of palladium(II) complexes of sulfur containing ligands in acidic solution is characterized by essentially invariant ΔV^{\dagger} values (entries 502-504). This prompted the conclusion that the term "duality behavior" previously introduced is "nonexistent", since variation of electronic property for a common steric character of the ligand changes the reactivity markedly but has no influence on ΔV^{\dagger} . The reactions are of associative nature. Similar reactions of the tetraaqua Pd(II) ion with other sulfur ligands (entries 498–501) yield ΔV^{\dagger} values 186 which span a small range of negative quantities, signifying a similar Ia mechanism, vide infra.

Formation of Pd(II) carboxylate complexes (entries 524-526) from the tetraagua ion of palladium(II) is characterized by a rate-determining step in which there is significant bond-making in the transition state and the activated complex exhibits trigonalbipyramidal geometry. 191 Stabilization within the transition state is through the hydrogen bond formed between the entering carboxylic acid and the leaving aqua ligand. The corresponding dissociation reactions (entries 527-529) have also been studied as a function of pressure. The volume profiles for some of these reactions are shown in Figure 4. Anation reactions of alkyl-substituted dien complexes of palladium(II) (entries 518–523), in which coordinated water is substituted by thiourea or methyl substituted thioureas proceed by an associative mechanism which is unaffected by either steric hindrance on the dien ligands or the entering nucleophile.⁹³

Binding of ligands such as Ino and IMP to a Pd(II) center in which three coordination sites are nonsubstituting (entries 505-508) occurs by an associative mode of activation. When the nonsubstituting

ligands on Pd(II) ions are en and Et₄en (entries 509–515) each of the observed kinetic processes depends on nucleoside concentration and it is evident that the steric restriction afforded by the ethyl substituents affects the second step in the formation reaction. The binding and dissociation (aquation) of the nucleosides occur associatively.

Entries 498-501 and 577-580 can be considered together as the two reaction series are for the complexation of tetraagua Pd(II) and Pt(II) ions respectively by unidentate sulfur ligands. ¹⁸⁶ In all cases the reactions are judged to proceed by an Ia mechanism, but with the values of ΔV^{\dagger} being more negative for the Pt(II) series. Since it was argued that the tetracoordinated agua cations of the two metals should be of similar molar volumes because the bond distances are similar, the difference in ΔV^{\dagger} values is then attributable to the partial molar volumes of the transition state. There is thought to be less extensive orbital overlap in the five-coordinate transition state in the case of Pd(II), which should result in weaker and longer metal-ligand bonds and therefore a less compact structure than in the case of the transition state for the reaction of Pt(II). There is a correlation between ΔV^{\dagger} and ΔS^{\dagger} for the Pt(II) series but not for the Pd(II) series, again indicating stronger bonding in the transition state for the former series and weaker solvation in the transition state for the Pd(II) series. No obvious correlation could be discerned between the values of ΔV^{\dagger} for solvent exchange^{95,398,399} and complex formation and with the size and steric requirements of the ligands nor the steric encumbrance in the first coordination sphere of the complex. A further example of Pd(II) reactivity is illustrated¹⁹⁰ by the complex formation and dissociation of the CH₃CN complex (entries 516 and 517). Although formation of both a mono and a bis complex were studied, the latter existing finally in a cis-to-trans ratio of about four following the initial rapid formation of the trans isomer from the mono complex and the slow isomerization to the cis form, the volume data refer to the mono complex only. The values of the activation volume are small and negative in both directions, indicating associative character. Comparative volume profiles could be developed for the corresponding reactions of DMSO¹⁰⁵ and $\hat{H_2}O$, 391 demonstrating that since the reverse reactions have statistically equivalent volumes of activation (ca. $-1.9 \text{ cm}^3 \text{ mol}^{-1}$) the volume difference between the reactants for the reverse reaction and the transition state is independent of leaving group when water is the entering ligand.

By employing 139 La NMR spectroscopy the formation of a terdentate chelate complex of aqua La³⁺ (entry 556) could be studied. 198 Chelate ring closure was found to be rate determining. Although the reaction volume of $+12.1~\rm cm^3~mol^{-1}$ could readily be understood in terms of a strong electrostriction decrease due to charge neutralization upon complex formation, the relatively smaller values of the volumes of activation for the forward and reverse (entry 557) reactions were such that no definite mechanistic assignments were reported. 198

Variable-pressure UV spectroscopy was employed to study the equilibrium between Ce(H₂O)₉³⁺ and Ce- $(H_2O)_8^{3+}$ (entry 558), yielding a value of +10.9 cm³ mol⁻¹ for the reaction volume. ¹⁹⁹ By considering this value together with the activation volume for water exchange on other trivalent octaaqua lanthanides (Tb and Tm) that had already been determined, 100 it was possible to assign an Ia mechanism to the water exchange on these octaaqua ions. Variable-pressure UV-vis spectroscopy has been used to measure the volume change accompanying the departure of one water molecule from two triaqua europium(III) multidentate complexes (entries 559 and 560). 102 For the edta complex the reaction volume is close to that expected⁴⁰⁰ for release of a coordinated water to the bulk solvent and to the value for a comparable process in the preceding table entry. The situation is more complicated in the second complex, as a much smaller positive reaction volume is obtained. It was suggested that this may arise because the binding of the third water molecule in the inner coordination sphere may cause a partial or complete unbinding of a ligand carboxylate arm.

The reaction described by entry 587 is complex kinetically. The initial combination step is accompanied by a negative value of ΔV^{\dagger} which is rationalized not in conventional terms but simply by considering a volume decrease due to the hydrogen sulfite ligand being incorporated into the inner coordination sphere of the complex during the activation process. Following this formation process, a step involving linkage isomerization occurs. The latter has a small positive ΔV^{\dagger} , indicating an intramolecular rearrangement via a loosely bound transition state, in which the Pt-O bond is weakened before a new Pt-S bond is formed.

Two systems were studied in which a Pt-C bond was introduced into the coordination sphere (entries 588–591). In both cases this led to a significant increase in the lability of the complexes, but the volumes of activation clearly demonstrated that no changeover in mechanism occurred, i.e., ligand substitution still follows an associative mechanism.

d. Ligand for Ligand Substitution

In searching for a correlation between leaving group cone angle and volume of activation, 137 for leaving group replacement by CN⁻ in pentacyanoferrate(II) complexes, departing ligands of widely different cone angles were selected (entries 206–212). The values of ΔV^{\dagger} are consistent with a fully dissociative mechanism However, when the activation volumes obtained¹³⁷ were considered in combination with values for other leaving groups, no meaningful correlation with a steric property of the leaving group could be established. Entries 210-212 are similar reactions to those of the previous four entries. However, the emphasis in this investigation was a comparison between values of ΔV^{\dagger} obtained from conventional high-pressure kinetics and those emerging from calculations based on the surface of activation method¹³⁸ whereby rate constants, k for the same reactions are obtained at several salt concentrations in the range up to 6.0 M, and the logarithmic ratios $\ln(k/k_0)$ (where k_0 is the rate constant when no salt is added) are subsequently plotted against incremental values of the solution surface tension. Parameters derived from such plots lead ultimately to ΔV^{\ddagger} values, indicated in brackets after the values determined from high-pressure kinetic measurements. \$^{138,142}\$ Agreement between the two methods is reasonably good.

The values of ΔV^{\dagger} for substitution of a range of pyridine derivative ligands and other leaving group variants from pentacyanoferrate(II) complex ions by CN⁻ in aqueous solution are all positive (entries 219–241) and vary little, consistent with a D mechanism. There are reasonable correlations between the logarithm of the rate constants and the p K_a values and also the values of ΔV^{\dagger} for uncharged leaving groups from this and other studies. In some cases the addition of a cosolvent (mostly monools) causes changes in the rate constant and ΔV^{\dagger} that can be explained easily, while in other cases the interpretation is not unambiguous.

The last group of entries chosen for discussion contains substitution reactions of lanthanide complexes. Particular interest in the kinetics of these reactions and solvent exchange on these ions has been generated by the application of complexes of this general type as NMR imaging agents. The europium complex undergoes the substitution reaction shown (entries 561 and 562) by an interchange mechanism with significantly associative character²⁰⁰ while the pressure dependence of the kinetics of substitution of the gadolinium complexes (entries 563–566) allows the conclusion that there are large solvational changes associated with the acid-catalyzed dechelation process.²⁰¹

Several examples of ligand substitution reactions for which ΔV^{\dagger} values are available have been the subjects of "reanalyses". 401 The objective was to provide improvement in consideration of correlations of leaving group partial molar volumes with measured volumes of activation for reactions such as the base hydrolysis of Co^{III}(NH₃)₅(Y) complexes in which the rate-determining step (within the conjugate base mechanism) is the dissociative departure of Y. Aquation of the same system, substitution of X in $Fe(CN)_5X^{3-}$ complexes (X = amine, substituted pyridine, or substitued pyrazine ligands), substitution of L in Cr^{III}(TPP)(Cl)(L) by 1-methylimidazole in toluene (L = pyridine, quinoline, and PPh₃) and the base hydrolysis and aquation of Cr(III) pentaammine or pentaamine chloro complexes were also considered. No new data were presented, yet the reliability of literature ΔV^{\dagger} values was questioned. In this communication, correlations of results were tested by using equations modified from those proposed earlier and by using a cone as a leaving group geometric model. The outcome is an explanation of the observation that there is no correlation between the volume of activation and the partial molar volume of the leaving group for a dissociative substitution process.

A cone model has previously been used in correlating experimental volume of activation data for addition reactions (entries 796–813) with the nucleophile

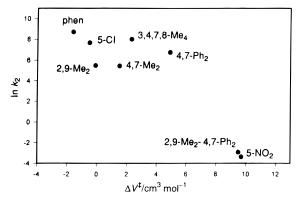
cone angle approach to an osmium carbonyl complex²⁴⁴ (see also section 2.D).

C. Photoinduced Thermal Substitution Reactions

Flash photolysis techniques have been adopted with great success to initiate a reaction sequence. In these systems, we are interested in the effect of pressure on subsequent thermal reactions. The unstable species generated in solution may have relevance, for instance, in catalytic and biological systems. The pressure dependence of such reactions can once again reveal important mechanistic information. Irradiation of $M(CO)_6$ (M=Cr,Mo,W) in a coordinating solvent (S) produces intermediates of the type $M(CO)_5S$, which can undergo rapid solvent displacement by a nucleophile (L) to produce $M(CO)_5L$ as shown below:

$$M(CO)_6 + S + h\nu \rightarrow M(CO)_5S + CO$$
 fast
 $M(CO)_5S + L \rightarrow M(CO)_5L + S$ slow

The data for a series of M, S, and L (entries 602–620 and 664–666) demonstrate the roles played by the size of the metal center (M), the bulkiness of the ligand (L), and the coordination ability of the solvent (S). The data exhibit a trend to more negative (less positive) ΔV^{\dagger} values for the larger metal centers. 211,212


It is also possible to displace the coordinated solvent molecule by ring closure of a potential bidentate ligand such as a P olefin. All members of a series of such reactions for cis-(CO)₄W(S)(PPh₂(CH₂)_nCH= CH₂) (n=1 to 4, S = chlorobenzene) (entries 671–674) decrease their reaction rates with increasing pressure. The ΔV^{\dagger} data indicate that chelate ring closure for n=1 and 2 mainly involves an interchange (I_d) mechanism in which the olefin moiety is preassociated with the metal center, followed by rate-determining loss of S. In the case of n=3 and 4, ΔV^{\dagger} reaches the limiting value observed for the dissociation of chlorobenzene and presumably does not involve any significant preassociation.²¹⁹

When the attacking nucleophile is a bidentate ligand, flash photolysis of $M(CO)_6$ results in the reaction sequence:

$$M(CO)_6 + h\nu \rightarrow M(CO)_5 + CO$$
 $M(CO)_5 + S \rightarrow M(CO)_5 S$ fast

 $M(CO)_5 S + N - N \rightarrow M(CO)_5 N - N + S$ k_1
 $M(CO)_5 N - N \rightarrow M(CO)_4 (N - N) + CO$ k_2

in which ring closure now involves CO displacement in contrast to displacement of S discussed above. The reported data clearly demonstrate that the nature of the metal center and the bulkiness of the N–N ligand control the intimate nature of the CO displacement mechanism. The larger metal centers (Mo and W) tend to exhibit significantly negative $\Delta \mathit{V}^{\ddagger}$ values, suggesting ring closure in an associative way. The smallest Cr center must lose CO prior to ring closure since only in the absence of steric hindrance on the

Figure 5. Logarithm of the second-order rate constant (k_2) for the chelation of phen and substituted derivatives when bound to Mo(CO)₅ in toluene versus ΔV^{\dagger} at 298 K. (From ref 214.)

entering ligand, as in the case of ethylenediamine, can an associative ring closure occur. 210

More recently, systematic studies of the effect of bulky substituents on bipyridine and phenanthroline (entries 621-638), as well as the influence of the solvent on the ring-closure reactions of M(CO)₅N-N (M = Mo and W) (entries 639-644 and 660-666) were undertaken.^{216,218} The results for the series of bipyridine ligands indicate a change in ΔV^{\dagger} from small negative to small positive on increasing the steric hindrance on the Mo complex. This can be ascribed to a gradual change in mechanism from associative interchange to dissociative interchange on increasing the steric hindrance on the ligand. A similar trend is observed for the W complexes, although the overall ΔV^{\dagger} value remains negative throughout the series of ligands. In this case the values suggest that ring closure in the case of the W complexes remains associative, although a gradual change from limiting associative to associative interchange may occur on increasing the steric hindrance. Throughout the series of complexes the ΔV^{\dagger} values are more negative for W than for Mo, which indicates that the W metal center has a greater ability to undergo bond formation with the ringopened chelate.

A series of studies was also undertaken for substituted phenanthroline complexes of the type Mo-(CO)₅N-N (entries 627-638). The ring-closure rate constant k_2 in general decreases with increasing steric hindrance on the ligand, and the apparent correlation in Figure 5 indicates that this trend is accompanied by a pronounced change in ΔV^{\dagger} from small negative to significantly positive values. This trend in ΔV^{\dagger} in going from faster to slower reactions clearly reveals the position of the transition state in terms of being "early" or "late". For faster reactions, ring closure will occur prior to release of CO (i.e., negative ΔV^{\dagger} , I_a), whereas the slower reactions will involve more CO bond cleavage (i.e., positive ΔV^{\dagger} , I_{d}). The "early" transition state will be closer to the reactant structure in terms of semi-seven-coordination, and the "late" transition state will be closer to the product state, i.e., chelated and total release of CO.214,215

The effect of solvent on the rate and associated ΔV^{\ddagger} value for the ring-closure reactions of M(CO)₅phen

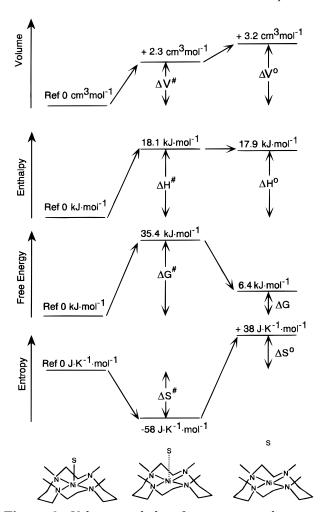
was studied for M = Mo and W (entries 639–644, 660–666). The orders of magnitude slower ringclosure reaction observed in THF is in agreement with the fact that THF is a more strongly coordinating solvent. This is accompanied by a more negative ΔV^{\dagger} value which is ascribed to competition between direct ring closure and indirect ring closure, via the coordination of THF followed by ring closure. Values of ΔV^{\dagger} for this reaction in weakly coordinating solvents such as toluene, fluorobenzene, heptane, and chlorobenzene are in many cases rather small, very typical for an interchange (I_a or I_d) mechanism. The significantly more negative value observed for reaction in THF must be related to its direct participation in the ring-closure reaction, presumably via the associative formation of a seven-coordinate intermediate followed by ring closure in a concerted manner.

More recently, similar photoinduced ring-closure reactions were studied in supercritical fluids, e.g., CO_2 and ethane, and the results are discussed in section 2.K.

D. Addition Reactions

The addition of 3,4-dihydro-2*H*-pyran to a chromium-based carbene or indeed to two tungsten-based carbenes proceeds rapidly and the mechanism, independent of metal center, is concerted, synchronous, and a single step.²²³ It was further concluded that there is no zwitterionic intermediate or strongly dipolar transition state. The rates at ambient pressure of other similar reactions, in which a range of solvents of widely varying polarity were employed, were mostly solvent independent, permitting the conclusion that the ΔV^{\dagger} values of reactions of entries 682, 782, and 783 arise from intrinsic volume changes associated with bond formation. In another study²²⁴ in which chromium- and tungsten-containing compounds (entries 683, 684, 788, and 789) were compared in their reactivity, the ΔV^{\dagger} values were all large and negative as were the ΔS^{\dagger} values, indicating considerable bond formation in the transition state, and the minor differences in the former parameters were attributed to different geometries, Cr vis a vis W, in the transition state. For the addition reactions (entries 685–691), in CH₃CN, the consequence of varying the electron-withdrawing ability at the para position of the aniline addition agent was examined.²²⁵ The amine basicity controls the rate of bond formation in generating the polar transition state and determines its position (early/late). Overall the reaction is a two-step process leading to a zwitterionic intermediate.

Of the three types of reaction system containing an iron center in this section, one (entries 697 and 698) is termed an addition²²⁷ but could equally well be termed a substitution. Two equivalents of imidazole can combine in the axial positions of the


complex in DMSO, each being characterized by large positive ΔV^{\dagger} values supporting the assignment of a dissociative character in their reactions. The same system has also been studied in acetonitrile, and contrasting features were indicated, one being the complication of self-association of imidazole in CH₃-CN. Entries 699–712 cover the addition of 4-substituted pyridines to various dienyl iron compounds in CH₃CN. ^{228,229} A common mechanism is not applicable: differences depending on the nature of the pyridine substituent and the particular dienyl were noted, and on the basis of the results it was concluded that the amine basicity and steric hindrance in the dienyl ring are crucial parameters in controlling the location of the transition state. Addition of the first CN⁻ or imidazole to the five-coordinate ferric porphyrin in DMF (entries 713 and 714) is too fast to be measurable by the stopped-flow method. The ΔV^{\dagger} values refer to the addition of the second ligand by an associative mechanism.

A large range of coordinated ligands was employed in measurement of the reaction volume of hydroxide or methoxide addition to the $\text{Co}^{\text{III}}(\text{hfac})L$ series of species (entries 715–740): a wide range of reaction volumes was recorded. They could be interpreted in terms of electrostriction changes, volume differences when L forms crevices in the coordinating sphere and when the ligand is flexible, allowing intrusion of the small solvent (H₂O) molecules.

Entry 745 is a reaction involving a spin-state change upon conversion from a five-coordinate paramagnetic Co(III) species to a six-coordinate diamagnetic Co(III) species, upon formation of the pyridine complex.²³⁴ On a volume basis this represents a novel reaction type. Although metal to ligand bond lengths are expected to change as a consequence of the change of spin state, the contribution to the reaction volume from this source was not as significant as expected.

The reaction volumes for addition of four different solvent molecules to a four-coordinate macrocyclic complex of nickel(II) have been reported²³⁵ (entries 746–749). The values reflect a small volume reduction upon complete transfer of a solvent molecule from the bulk to become coordinated to the nickel center, with somewhat varying degrees of incorporation into the macrocyclic system. The reaction is accompanied by a change in the spin state of nickel from low spin to high spin in the addition reaction direction. By making use of the ΔV^{\dagger} value for solvent exchange (CH₃CN, dissociative pathway) from an earlier study, 402 it was possible to construct a volume profile in the case of the addition of CH₃CN. Profiles for G, H, and S are also displayed with the volume profile in Figure 6, and show an interesting difference between the volume and entropy changes. These can be explained by arguing that the ground-state fluxionality between trigonal-bipyramidal and squareplanar geometries is lost in the transition state. The mechanism for solvent exchange is dissociative, which is supported by the correspondence between the enthalpy of reaction and enthalpy of activation.

Oxidative addition of CH₃I to rhodium(I) complexes (entries 761–772) proceeds differently in a mecha-

Figure 6. Volume, enthalpy, free energy, and entropy profiles for the reaction of R,S,R,S-[Ni(tmc)(CH₃CN)]²⁺ to R,S,R,S-[Ni(tmc)]²⁺ + CH₃CN at 25.0 °C. (From ref 235.)

nistic sense depending on the ligands bound to the central metal. 238 For example, the reaction rate of the sacac-containing compound shows no significant solvent dependence, whereas the reactivity of the cupf-containing compound differs significantly in highly polar solvents. The $\Delta\,V^{\dagger}$ values are all negative as expected for this type of addition reaction, yet the variation in these values and the different rate/solvent dependencies led to the proposal of the simultaneous formation of two bonds between rhodium and the methyl and iodine moieties, giving rise to a concerted three-centered transition state for the former compound while the cupf compound reacts via formation of a linear transition state and participation of an ion-pair intermediate.

The addition of alkynes to the palladiun compounds (entries 775–779) is characterized by more negative $\Delta \textit{V}^{\ddagger}$ values for the bulkier diphenylalkyne than for the ethyl analogue. The alkynes can precoordinate to the Pd(II) compound by a bridge opening route, the insertion is nonconcerted to a significant extent and the reaction proceeds with nucleophilic attack of the C1 carbon at the coordinated alkyne.

Addition of pyrrolidine to unsaturated Fischer carbene complexes with M=Cr (entry 681), Mo (entry 750), W (entries 790–795) is a two-step process in which there is a polar transition state for the rate-

determining step and a zwitterionic intermediate. 222 Negative ΔV^{\dagger} values indicate substantial bond formation, and since they exhibit only a small solvent dependence the electrostriction component is minor. Finally, in this section, the pressure dependence of the rate constants for addition of several nucleophiles to an osmium decacarbonyl complex (entries 796-813) has been investigated.²⁴⁴ There is no dependence on the p K_a of the nucleophile, and the volume reduction observed is controlled by steric rather than electronic factors. ΔV^{\dagger} shows a remarkably good correlation with the cone angle of each nucleophile. What may be termed a steric threshold is about 160°, above which value ΔV^{\dagger} becomes less negative denoting less penetration by the nucleophile, and the osmium phosphorus bond is longer in the transition

E. Formation and Dissociation Reactions

Although the majority of entries in this section are reactions in which there is a central transition element, there are a few cases in which the reaction involves either a representative element of small atomic number having very interesting mechanistic features, or a lanthanide element.

Entries 816 and 818 may be considered together. 246 Reaction volumes are of the expected sign. The dissociation constant of HF in water is increased by increasing pressure and the negative reaction volume arises from the contraction of water around the ionic product species compared with that around the undissociated molecules. Likewise the dissociation of NaF has a negative reaction volume resulting from the increase in electrostricted solvent.

Dissociation of the sodium cryptate, (Na⁺(C222)) (entry 817) an inclusive form of this type of complex in en as solvent, has been studied by high-pressure NMR spectroscopy, and is characterized by a $\Delta \mathit{V}^{\pm}$ value of +8.9 cm³ mol⁻¹.²⁴⁷ Projection of the sodium ion into the solvent as well as expansion of the cavity of C222 account for this result. It was noted that the volumes of activation for dissociation of the C221 complex of Na⁺ in DMF and DMSO (entries 819 and 820) were smaller²⁴⁸ and the notion of the potential importance of solvent donicity was addressed by comparing the enthalpies of activation. The solvent of highest donicity, en, has the lowest $\Delta \mathit{H}^{\sharp}$ reflecting the more favorable interaction of this solvent with Na⁺.

The dissociation of a sodium—cryptate complex (entries 819–824) differs somewhat depending on the solvent. Two parallel paths, one solvent assisted and the other acid dependent (dichloroacetic acid), are evident for the dissociation in DMF, whereas the solvent path prevails in the more basic DMSO, and the latter path is barely evident in the less basic CH₃-CN.²⁴⁸ A volume increase due to cage opening, not wholly compensated by electrostriction, is argued to be the explanation for the small positive ΔV^{\ddagger} values for the solvent-assisted pathway, while the negative values found for the acid-dependent path arise from a consequence of charge localization and electrostriction following hydrogen bond formation between a lone-pair of the cryptand and DCA. An additional

noteworthy aspect of this study is that the reactions were monitored by a high-pressure stopped-flow instrument making use of changes in conductance in the solution.

To permit the reaction of hydrogen peroxide with the V(V) species VO₂⁺ in strongly acidic medium (entries 826-828) to be studied it was necessary to employ tantalum as the material for construction of the high-pressure stopped-flow instrument.²⁴⁹ Reaction with the first equivalent of H_2O_2 is complex: three paths are evident, an acid-dependent path, and acid-independent path, and reaction in which the rate is proportional to the inverse of the hydrogen ion concentration, all of which yield positive volumes of activation. This obviously indicates an expanded transition state in each case. The acid-independent path is regarded as an associative attack by an H₂O₂ molecule into a face of the octahedral V(V) ion, followed by rearrangement of that geometry to a distorted pentagonal bipyramid. The second H₂O₂ molecule penetrates the surrounding sphere of the V center, but this volume decrease is compensated for by the volume increase due to elongation of the V-OH₂ bond, resulting in a zero volume of activation.

The conformational equilibrium involving C221 (entries 838–840) will be discussed later in section 2.F.²⁵⁰ The near zero volumes of activation for copper(II) ion C221 complex formation (entries 831 and 833) in both DMSO and DMF may be explained by compensatory effects of metal ion desolvation and rearrangement of the cryptand for the encirclement of the metal ion.²⁵⁰

The hydrogen bridge cleavage reaction by substituted pyridines in chloroform has been studied²⁵¹ for a Pd(II) complex and for a second complex, identical except for the replacement of Pd(II) by Pt(II) (entries 834 and 837). Both are associatively driven as may be interpreted from the large negative ΔV^{\dagger} values.

F. Isomerization Reactions

In this section activity with respect to the first row of transition metals has centered on but by no means exclusively on isomerization reactions of chromium-(III) and cobalt(III) complexes. Exciting new developments have also been recorded for isomerization reactions involving metal cluster compounds of ruthenium, osmium, and iridium.

Although very strictly speaking entries 838–840 should be included in the organic part of this review, the fact that these conformational equilibria are pertinent to metal ion binding studies with the same cryptands and are reported²⁵⁰ in the same publication persuaded us to include them here. The large positive reaction volumes in each solvent, obtained from ultrasonic absorption spectroscopy, indicate that the conformer with both nitrogen lone pairs of electrons directed to the inside of the molecular cavity has a larger volume than that with one electron pair directed toward the inside and the other directed outside the cavity.

The trans form of TiCl₄·2TMPA is slightly favored over the cis form (entry 841) in CHCl₃ solution at -30 °C, judging by the small negative reaction volume for cis to trans isomerization.²⁵³ The activation volume

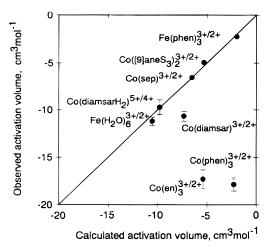
($\pm 6.2~{\rm cm^3~mol^{-1}}$) determined at 67 °C in the same solvent (entry 842) is considered to arise from an intramolecular twist mechanism with an expanded six-coordinate transition state, 64 a mechanism which resembles that advanced 403 for the cis to trans isomerization of SnCl₄·2Me₂S.

The two chromium(III) complexes (entries 843 and 844) each isomerize in basic solution and release a proton: the negative entropies of activation and volumes of activation arise as a result of solvent electrostriction around separated charge centers in the transition state. 121 Both the reaction volume and activation volume have been determined for a large number of trans to cis isomerizations of cobalt(III) bisethylenediamine-aqua-X complexes (entries 847-855).²⁵⁵ The former parameter can be correlated with the order of X in the spectrochemical series, as the reaction volume increases when a change in X causes a stronger crystal field. An interchange mechanism was preferred to a D_P mechanism. The latter would involve a tetragonal-pyramidal transition state. It was also considered possible that the ΔV^{\dagger} values could contain a component of en chelate ring expansion in the transition state. In the isomerization process water approaches the complex from the opposite side to the side from which the ratedetermining water molecule is dissociating, a situation different from water exchange on such complexes in which the incoming water molecule approaches from the side from which water departs. Since the reaction volumes and volumes of activation have both been obtained, the volumes of activation for the cistrans isomerization are also available²⁵⁵ (entries 856 - 864).

The cis–trans isomerization of $ZrCl_4\cdot 2(MeO)_3PO$ (entry 867) in $CHCl_3^{82,83}$ exemplifies the difference in mechanism caused by change in the ionic radius of the metal ion, since in this case the mechanism is associative ($\Delta V^{\dagger}=-1.6~{\rm cm}^3~{\rm mol}^{-1}$), whereas the analogous titanium compound undergoes isomerization by a dissociative mechanism ($\Delta V^{\dagger}=+6.2~{\rm cm}^3~{\rm mol}^{-1}$). 64

The first report on results of high-pressure measurements on metal cluster compound isomerizations illustrated the difficulty in mechanistic diagnosis, as the process is a multistep one.²⁵⁹ The modestly positive value of ΔV^{\dagger} for the trinuclear ruthenium compound (entry 875) was interpreted as an exchange pathway involving migration of one hydride from a doubly bridging coordination mode to a terminal coordination site in the transition state, whereas the near zero ΔV^{\dagger} value for a related trinuclear osmium complex (entry 887) was considered to be consistent with exchange of bridging and terminal hydrides and a transition state in which both hydrides are bridging.²⁵⁹ The solvents for the two systems were different, but this is unlikely to have any mechanistic consequences.

The trinuclear ruthenium carbonyl complexes isomerize in decane (entries 868–870) by different mechanisms depending on the composition of the other ligands. For example the compound in entry 868 has a near zero ΔV^{\dagger} and ΔS^{\dagger} , consistent with an intramolecular process in which there are no ap-


preciable changes in bond lengths upon forming the transition state or there is compensation for any changes. Other possible mechanisms are ruled out because they would either generate distinctly positive (ligand dissociation) or distinctly negative (CO association or bimolecular hydride transfer) volumes of activation. By contrast the compound in entry 869 is characterized by a large positive ΔV^{\dagger} value which was accounted for by anchimeric assistance from the methylidene substituent. The isomerization of another trinuclear ruthenium carbonyl compound (entry 870) in decane²⁵⁷ exhibited a ΔV^{4} value about 50% of the magnitude of the reaction volume estimated from solid-state molar volumes. The isomerization involves opening of the Ru₃ framework by cleavage of one Ru–Ru bond, reductive elimination of a C–H bond, breakage of the C-SEt bond, and then formation of a Ru-SEt-Ru bridge, and the connectivity of the carbon atoms to the metal center is changed. The rate-limiting step was judged to be intramolecular with significant metal-metal cleavage and C-S bond cleavage in the transition state. The magnitude of ΔV^{\dagger} was considered to be higher than would be accommodated by C-H elimination alone. Furthermore, CO dissociation is not thought to be involved. The isomerization of various geometric variants of the mononuclear ruthenium complexes (entries 871-874) takes place by a dissociative pathway.²⁵⁸

The kinetics of rearrangement within several binuclear rhodium compounds (entries 876–883) have been studied as a spontaneous reaction or acid or base assisted. The starting compound contains a metalated and an equatorial phosphine which rearranges to produce the corresponding doubly metalated compounds. Steric hindrance on the initial products is thought to have an influence on reaction product distribution. The cases where the volume of activation has been determined all point toward the importance of compression in the transition state.

In the polynuclear iridium carbonyl complex (entries 888 and 889) isomerization there is no charge change so that electrostriction changes are negligible. The reaction volume for the bridged to unbridged species (entry 888) is close to that calculated on the basis of the molecular parameters rather than the crystal cell data. Intramolecular CO exchange (entry 889) is reasoned to involve the breaking of three M–CO bonds and formation of three additional terminal CO moieties, and the transition state is thought to be the result of the formation in a concerted manner of three semibridging CO units.

G. Electron-Transfer Reactions

Significant progress has been made in the application of high-pressure thermodynamic and kinetic techniques to the study of inorganic and bioinorganic electron-transfer reactions during the period covered by this review. Especially in the case of self-exchange reactions, which represent the simplest symmetrical electron-transfer process, it has been possible to account for the observed pressure effects in terms of the Marcus—Hush theory. In the case of nonsymmetrical electron-transfer reactions, the volume

Figure 7. Electron self-exchange reactions: plot of ΔV^{\dagger} (calculated) versus ΔV^{\dagger} (experimental). sep = sepulchrate = 1,3,6,10,13,16,19-octaazabicyclo[6,6,6]eicosane; [9]aneS3 = 1,4,7-trithiacyclononane; diamsar = diaminosarcophagine = 1,8-diamino-1,3,10,13,16,19-hexaazabicyclo[6,6,6]eicosane; en = ethylenediamine, phen = 1,10-phenanthroline. (From refs 287 and 299.)

changes are primarily due to solvent reorganization from changes in electrostriction associated with the electron-transfer process. Several reviews, the subject of which is the effect of pressure on electron-transfer reactions, have appeared in the literature. 3,6-8,11,13,14,16,18,404,405 In our discussion of the data we will distinguish between symmetrical and non-symmetrical electron-transfer processes.

a. Symmetrical Electron-Transfer Reactions

Symmetrical self-exchange reactions are the simplest kind of electron-transfer process, since there is no net chemical reaction and no reaction volume, and therefore in principle the mechanistic interpretation of activation volume data, as in the case of solvent exchange reactions is relatively straightforward. Swaddle and collaborators have made cogent contributions in this area. One of the first interesting observations was that the activation volume for selfexchange on $Fe(H_2O)_6^{3+/2+}$ is ca. 12 cm³ mol⁻¹ more negative than that for the self-exchange in Fe(H₂O)₅- $OH^{2+}/Fe(H_2O)_6^{2+}$ (entries 1006 and 1007).²⁸⁷ This difference could be explained in terms of the operation of an outer-sphere mechanism in the former process and an inner-sphere mechanism in the latter case, since the formation of a hydroxo bridged species will be accompanied by the release of a solvent molecule, i.e., a markedly more positive activation volume. The same group has also studied a series of self-exchange reactions (see entries 1007 and 1043-1049) and found a good correlation between experimental and theoretically calculated values (see Figure 7). In most cases the self-exchange reaction is significantly accelerated by pressure, with the exception of the $Fe(CN)_6^{3-/4-}$ system which proceeds in exactly the opposite direction (i.e., the reaction rate is retarded by pressure). In general, solvent reorganization accounts for the largest contribution toward the observed activation volume. The latter can be accounted for theoretically in terms of contributions resulting from internal reorganization, solvent reorganization, Coulombic or electrostatic work change, and a Debye–Hückel activity coefficient term. 299,406 As can be seen from Figure 7 large deviations were observed for the $\text{Co(en)}_3^{3+/2+}$ and $\text{Co(phen)}_3^{3+/2+}$ systems where the theoretical volume of activation is between 10 and 15 cm³ mol $^{-1}$ more positive than the experimental value. 300,302 The deviations are most probably related to the participation of a high-spin to low-spin changeover associated with the electron-transfer process, accounting for an additional volume collapse of ca. 10 cm³ mol $^{-1}$. 299

Another interesting example involves the selfexchange reaction between MnO₄⁻ and MnO₄²⁻ for which ΔV^{\dagger} has a value of -21 cm³ mol⁻¹ (entries 927–929). This reaction is catalyzed by counterions such as Na⁺ and K⁺ and the catalysis manifests itself in very different ΔV^{\dagger} values, viz. +3 and -1 cm³ mol^{−1}, respectively. Self-exchange reactions in polar organic solvents also exhibit distinctly negative volumes of activation (entries 930-960) but ion pairing with counterions is expected to influence the values. Such ion pairs formed by cationic reactants in nonaqueous solvents are generally less reactive in electron-transfer reactions than the free ions according to Wherland. 272 The experimental ΔV^{\dagger} values are expected to be more negative than the calculated ones, since pressure in general breaks up ion pairs by favoring solvation of the separated ions. 404

Recently Swaddle et al. 45,407 determined volumes of activation for heterogeneous self-exchange reactions of a series of complexes on the surface of an electrode. In general it was found that the numerical values are about 50% of those for the corresponding homogeneous reactions, which resulted in the so-called "fifty percent rule". This trend was shown to be in agreement with theoretical predictions based on an extension of the Marcus theory. 45,407

b. Nonsymmetrical Electron-Tranfer Reactions

One objective of many mechanistic studies dealing with inorganic electron-transfer reactions has been to distinguish between outer-sphere and inner-sphere mechanisms. High-pressure kinetic methods and analysis of reaction volume profiles have been employed to provide a better understanding of the intimate mechanisms involved in such processes. The differentiation between outer-sphere and innersphere mechanisms depends on the nature of the precursor species, Ox//Red in the following scheme, which can either be an ion pair or encounter complex, or a bridged intermediate, respectively:

$$Ox + Red \leftrightarrow Ox//Red$$
 K
 $Ox//Red \rightarrow Ox^-//Red^+$ k_{ET}
 $Ox^-//Red^+ \leftrightarrow Ox^- + Red^+$

This means that the coordination sphere of the reactants remains intact in the former case and is modified by ligand substitution in the latter, which will naturally affect the associated volume changes.

A difficulty encountered in many cases in kinetic studies of outer-sphere electron-transfer processes concerns the separate determination of the precursor

formation constant (K) and the electron-transfer rate constant ($k_{\rm ET}$) (in the scheme outlined above), from an empirically determined composite parameter. In the majority of cases, precursor formation is a diffusion-controlled step, followed by rate-determining electron transfer. In the presence of an excess of Red, the rate expression is given by

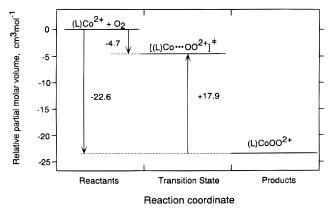
$$k_{\text{obs}} = k_{\text{ET}} K[\text{Red}]/(1 + K[\text{Red}])$$

In many cases K is small, such that this equation simplifies to $k_{\rm obs} = k_{\rm ET} K [{\rm Red}]$, which means that the observed second-order rate constant and the associated activation parameters are composite quantities, viz. $\Delta V^{\dagger} = \Delta V^{\dagger}(k_{\rm ET}) + \Delta V(K)$. When K is large enough such that $1 + K [{\rm Red}] > 1$, it is possible to separate $k_{\rm ET}$ and K kinetically and also the associated activation parameters, viz. $\Delta V^{\dagger}(k_{\rm ET})$ and $\Delta V(K)$. ¹⁸

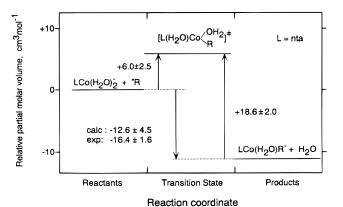
A series of reactions was studied where it was possible to resolve K and $k_{\rm ET}$, and thereby $\Delta \textit{V}(K)$ and $\Delta \textit{V}^{\ddagger}(k_{\rm ET})$. In this case oppositely charged reaction partners were selected as indicated in the following general scheme:

$$\begin{split} \text{Co(NH}_3)_5 \textbf{X}^{(3-n)+} + \text{Fe(CN)}_6^{\ 4^-} &\longleftrightarrow \\ & [\text{Co(NH}_3)_5 \textbf{X}^{(3-n)+} \cdot \text{Fe(CN)}_6^{\ 4^-}] \quad K \\ [\text{Co(NH}_3)_5 \textbf{X}^{(3-n)+} \cdot \text{Fe(CN)}_6^{\ 4^-}] &\to \\ & \text{Co}^{2^+} + 5 \text{NH}_3 + \textbf{X}^{n^-} + \text{Fe(CN)}_6^{\ 3^-} \quad k_{\text{ET}} \\ \textbf{X}^{n^-} &= \text{H}_2 \textbf{O}, \, \text{Me}_2 \textbf{SO}, \, \text{py}, \, \text{Cl}^-, \, \textbf{N}_3^- \end{split}$$

The data⁴⁰⁸ indicated that ion-pair formation is accompanied by close to zero ΔV values. This is rather surprising, since it is generally accepted that ion-pair formation should involve considerable charge neutralization accompanied by strong desolvation due to a decrease in electrostriction. Values of ΔV therefore indicate that the reaction partners most probably exist as solvent-separated ion pairs, i.e., with no significant charge neutralization accompanied by desolvation. It is evident that the electrontransfer steps exhibit a strong pressure-induced deceleration, with most systems having a ΔV^{\dagger} value of between +25 and +34 cm³ mol⁻¹. These values indicate that electron transfer is accompanied by extensive desolvation, most probably related to charge neutralization associated with the electron-transfer process.²⁷⁹ A simplified model based on partial molar volume data, in which electron transfer occurs from the precursor ion pair $[Co(NH_3)_5X^{(3-n)+} \cdot Fe(CN)_6^{4-}]$ to the successor ion pair $[Co(NH_3)_5X^{(2-n)+} \cdot Fe(CN)_6^{3-}]$, predicts an overall volume increase of ca. 65 cm³ mol⁻¹. This means that according to the ΔV^{\dagger} values reported the transition state for the electron-transfer process lies approximately halfway between the reactant and product states on a volume basis for the precursor and successor ion pairs. The largest volume contribution arises from the oxidation of $Fe(CN)_6^{4-}$ to Fe(CN)₆³⁻, which is accompanied by a large decrease in electrostriction and an increase in partial molar volume of ca. 40 cm³ mol⁻¹ (see entry 1000). Theoretical calculations also confirmed that the transition state for these reactions lies approximately


halfway along the reaction coordinate on a volume basis.²⁷⁹ This first information on the nature of the volume profile for an outer-sphere electron-transfer reaction proved to be in good agreement with results reported subsequently for systems with a low driving force in which it was possible to construct a complete volume profile by studying the effect of pressure on both the forward and reverse reactions, as well as on the overall equilibrium constant (see section 2.L).

Data have also been reported for a series of related complexes containing phosphor—oxo ligands (see entries 1019-1024, 1027-1031). The results can be interpreted in terms of major solvational changes associated with the oxidation of $Fe(CN)_6^{4-}$. Other interesting systems that have been investigated include reduction of aquated Fe(III) by Co(II) complexes (entries 966 and 967), oxidation of Fe(II) complexes by peroxodisulfate (entries 985–990), reduction of Co(III) complexes by Fe(II) complexes in nonaqueous solution (entries 1056-1072), oxidation of Ni(II) complexes by HO_2 • (entries 1081-1087), and the reduction of $IrCl_6^{2-}$ by a series of catechols (entries 1132-1144).


Data are also available for the reduction of aquated Fe(III), $Fe(CN)_6{}^{3-}$, and $Ru(CN)_6{}^{3-}$ by ascorbic acid and ascorbate ions (entries 969-976, 1120, and 1121). It is an interesting finding that the hexacyano complexes all exhibit a strongly negative volume of activation that mainly results from the increase in electrostriction due to the reduction to $M(CN)_6{}^{4-}$ (M=Fe,Ru). In the case of the aquated Fe(III) species, the activation volumes are significantly positive; these have been ascribed to an outer-sphere electron-transfer reaction in the case of $Fe(H_2O)_6{}^{3+}$, but to an inner-sphere reaction in the case of the more labile $Fe(H_2O)_5OH^{2+}$ complex.

Other data include the oxidation of Fe(II) and Co-(II) chelated complexes by dioxygen (entries 962–965, 1017, and 1018). Oxidation reactions of chelated Fe-(II) complexes are all significantly accelerated by pressure and accompanied by negative volumes of activation. These can be ascribed to the binding of dioxygen that is accompanied by the oxidation of Fe-(II) to Fe(III) and the reduction of dioxygen to superoxide and peroxide ions, processes that are all expected to lead to a decrease in partial molar volume. In a recent reinvestigation of the Fe^{II}(edta) oxidation reaction it was possible to resolve the different reaction steps that form part of the oxidation process and to assign the negative volumes of activation in a more detailed way. 409 The formation of a diiron(III) peroxo complex from an alkoxo-bridged diiron(II) complex and dioxygen is also accompanied by a significantly negative volume of activation (entry $961)^{273}$

In another study²⁹² it was possible to construct a volume profile for the reversible binding of dioxygen to a Co(II) macrocycle, viz. hexamethylcyclam, to produce (L)Co $-O_2^{2+}$, which is a Co(III)—superoxo species (entries 1017 and 1018). The kinetics of the overall reaction could be studied by flash photolysis, since the dioxygen complex can be photodissociated and the subsequent reequilibration could be followed in the microsecond time range. A combination of the

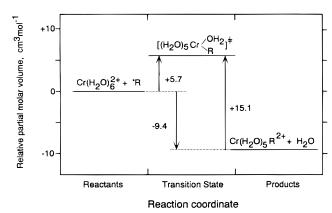

Figure 8. Volume profile for the reaction of O_2 with the Co(II)L complex (L = hexamethylcyclam) at 298 K. (From ref 292.)

Figure 9. Volume profile for the reaction of methyl radicals with the nitrilotriacetate complex of Co(II) at 298 K. (From refs 290 and 291.)

activation volumes for the binding and release of dioxygen results in a reaction volume that is in very good agreement with the value determined directly from equilibrium measurements as a function of pressure. The volume profile for the reaction is shown in Figure 8. The small volume of activation associated with the forward reaction was interpreted as evidence for a rate-determining interchange of the ligands, water versus dioxygen, which is followed by an intramolecular electron-transfer reaction to form Co^{III}-O₂⁻. It is the latter process that accounts for the large volume collapse en route to the reaction products. The oxidation of Cu(I) complexes by dioxygen is also characterized by distinctly negative volumes of activation, the reason for which is parallel to that noted for the cobalt complex system above (entries 1089 and 1090).

Oxidation of Cr(II), Co(II), and Ni(II) complexes by alkyl radicals have also been studied as a function of pressure using a high-pressure pulse-radiolysis technique. These reactions are all characterized by negative reaction volumes due to the oxidation of the metal center, and the associated volumes of activation (entries 894–903, 1014–1016, and 1088) can be used to obtain information on the nature of the transition state. The volume profile for the reaction of $Co^{II}(nta)(H_2O)_2^-$ with methyl radicals (CH₃) shown in Figure 9 indicates a significantly higher partial molar volume for the transition state than for either the reactant or product states. This was interpreted

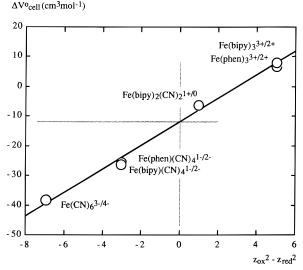


Figure 10. Volume profile for the reaction of an aliphatic radical with aqua Cr(II) species at 298 K. (From ref 265.)

in terms of an I_d substitution controlled mechanism, which is followed by a large volume reduction associated with metal—carbon bond formation accompanied by oxidation of Co(II) to Co(III).

Similar results were obtained for the reaction of $Cr(H_2O)_6^{2+}$ with 10 different aliphatic radicals. Although the overall reaction volume is significantly negative due to the oxidation of Cr(II) to Cr(III), the observed volumes of activation (entries 894-903) are all small and positive. This was interpreted as evidence for the occurrence of an I_d substitution mechanism that is controlled by water exchange on aquated Cr(II). Once again the large volume reduction after formation of the transition state (see volume profile in Figure 10) was ascribed to Cr-R bond formation and the conversion of CrII-R to CrIII-R⁻. These and other recent studies on the interaction of metal complexes with free radicals suggest that for nondiffusion controlled processes, the radicals can be treated as normal nucleophiles in ligand substitution processes which are often controlled by solvent exchange on the metal complex, i.e., typical for an inner-sphere electron-transfer process.

For the mechanistic interpretation of activation volume data for electron-transfer reactions, it is important to know the overall reaction volume associated with the redox process. Efforts have, in recent years, focused on the electrochemical determination of reaction volume data from the pressure dependence of the redox potentials. In this area the work has mainly been performed by Swaddle et al. and Tregloan et al. who developed the appropriate high-pressure techniques to conduct such measurements.44-47 The reported reaction volumes have to be corrected for the effect of pressure with a reference electrode. Tregloan et al. 42 conducted a well-designed set of experiments on a series of Fe^{III/II} couples in which the ligands were varied in order to change the overall charge of the complex (see entries 1000-1005). From a correlation of the cell reaction volume with the difference in the square of the charge on the oxidized and reduced forms of the complexes, it was possible by interpolation to estimate the reaction volume associated with the Ag/Ag+ reference electrode (see Figure 11) to be -11.9 ± 0.5 cm³ mol⁻¹ at 25 °C and 1.0 M ionic strength. Further measurements on a series of Cr, Co, and Ru complexes (see entries 914, 1038-1044, and 1097-1101) enabled a

Figure 11. Plot of V^0_{cell} versus $z_{\text{OX}}^2 - z_{\text{RED}}^2$ for Fe^{II}/Fe^{III} species. (From ref 268.)

systematic differentiation to be made between intrinsic and solvational volume contributions associated with the redox process. The results include examples where intrinsic volume changes are indeed very small, whereas in other cases intrinsic volume changes can be as large as the solvational volume changes. 268

H. Electrodeposition/Electrochemical Reactions

A number of studies have been performed in which the effect of pressure on electrodeposition and electrochemical reactions was investigated (entries 1145–1167). In many cases these processes are characterized by significantly positive volumes of activation, which were accounted for in terms of the release of solvent molecules during the deposition process.

I. Heterolysis, Homolysis, and Homolytic Fission

In a wide-ranging series of experiments (entries 1168-1201) heterolysis reactions of chromium(III) complexes have been examined. 322-324 The variations include different catalytic anions, different nonparticipating ligands, measurements over a pH range, and different R groups, where the R group connected to chromium is subject to cleavage from it. In the case of a catalytic anion (entries 1173-1181) the catalysis was enhanced with increasing basicity of the anion, and ΔV^{\dagger} values are all positive, indicating dissociatively activated heterolysis. Other data³²³ indicate the volumes of activation decrease somewhat upon increasing the anion concentration. The dissociative mechanism in this series of reactions involves breakage of a σ chromium-carbon bond accompanied by bond formation to the entering solvent molecule. The coordinated anion exerts a trans labilization effect, and this effect has been quite thoroughly studied when the anion is acetate. Phosphate ion also gives rise to a catalytic effect manifest through its coordination and trans labilizing effect and a dissociatively activated mechanism is induced. In earlier spontaneous heterolysis reactions the value of ΔV^{\dagger} was closer to zero, signifying a mutual cancellation of bond formation and bond breakage contributions.410

Pressure effects have been used as mechanistic probes for homolytic cleavage of cobalt carbon bonds in cobalamins.³²⁵ Solvents of different viscosities were used. Substantial positive volumes of activation for the $Ado-B_{12}$ and CH_3-B_{12} compounds (entries 1202 and 1205, respectively) were obtained; an exact adjudication of the magnitude of the values for the homolysis reactions was not presented, although it was suggested that the values were relatively large for the cage model for this type of reaction. The neopentyl derivative (entry 1204) has a much lower ΔV^{f} value which might arise as a consequence of the higher solvent viscosity at the lower temperature of measurement resulting in a higher cage efficiency. In water the reaction of entry 1203 yields a value of $-2.0 \text{ cm}^3 \text{ mol}^{-1}$. Here there is the complication that there is a dual reaction pathway, since homolysis and heterolysis occur. Thermolysis of the isopropylcobalamin in ethylene glycol/water mixtures proceeds by β-elimination (entries 1206 and 1207), a reaction which is insensitive to pressure at physiological temperature, but whose rate is retarded by pressure at 100 °C (entry 1208).325

In a series of papers³²⁶⁻³²⁸ the kinetics of homolysis of alkylcobalamins and model complexes (entries 1209 and 1249) in water when possible, in organic solvents or in water/2-propanol mixtures, have been studied as a function of pressure. The reactions proceed upon homolysis to form a caged pair of radicals, which subsequently are true free radicals, i.e., solvent separated, and then are subject to a radical trap to form the final trapped products. In the reactions of entries 1209–1227 two important features emerge: the R group in the substrate has very little influence, and the temperature variation of ΔV^{\dagger} is considerable. This latter observation may be explained by reasoning that at higher temperatures (large ΔV^{\dagger} value) there is negligible cage efficiency, whereas at lower temperatures when the value of ΔV^{\dagger} is much reduced then the cage efficiency is much higher. This implies that the solvent system viscosity variation with temperature is responsible for this difference. Therefore the pressure and temperature dependence of the rates of reaction of these and of similar systems may be used as a mechanistic probe to identify which radicals have the opportunity to escape the cage. The model reactions³²⁷ (entries 1228–1232) gave results which led to the proposal that there is a similarity between cobalt-carbon and carbon—carbon bond cleavages in 2-propanol mixtures. The measured values of $\Delta \textit{V}^{\text{+}}$ are composite quantities and this has been addressed³²⁸ (entries 1233–1249). The solvent contribution is termed the transport contribution in these systems. Upon correcting the measured ΔV^{\dagger} values to reflect only the homolytic fission intrinsic contribution, the values ranged from -2.0 to +12.3 cm³ mol⁻¹, values which were noted to be measurably smaller than those for similar reactions in aqueous solution. 410,411

J. Photochemical and Photophysical Processes

The effect of pressure on photochemical processes of inorganic systems has been reviewed elsewhere. $^{3,6,7,24-28}$ The applications have mainly focused

on ligand substitution reactions, which can be studied under continuous irradiation, or induced by flash photolysis. Both techniques have been applied in numerous systems and the results obtained will be treated separately.

During continuous irradiation the photochemical conversion, i.e., quantum yield, is measured as a function of pressure. The apparent volume of activation obtained must be corrected for the effect of pressure on all other deactivation processes such as radiative and nonradiative deactivation. Such information can only be obtained from photophysical measurements performed on the system as a function of pressure. 25,28 These complications can lead to a too simplistic interpretation of pressure effects on photochemical reactions as discussed in detail for Cr-(III) systems in the literature.⁴¹² These authors⁴¹² concluded in their detailed treatment of earlier published data that the observed pressure effects indeed support an associative mechanism (A or I_a) for ligand labilization regardless of the reactive state responsible, which is in contrast to the earlier conclusions in several theoretical treatments that ligand labilization has a dissociative character in these complexes.

The effect of pressure on the photosubstitution reactions of a series of Ru(II) diimine complexes was studied (entries 1279-1289) in different solvents. The apparent activation volumes are all significantly positive and increase with increasing temperature. The latter trend could be ascribed to a changeover from MLCT to an LF state that is favored by higher temperatures, with the result that the apparent volume of activation mainly represents the photophysical component. The pressure data clearly rule out the possibility of an associative attack by the entering ligand and support an I_d mechanism for the substitution from the LF state. In this system there is thus no evidence for an associative substitution mechanism originating from the MLCT state (see further Discussion).

A series of photosubstitution reactions of the type (entries 1264–1273, 1278, and 1292)

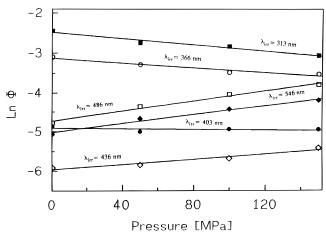
$$M(CO)_6 + L \rightarrow M(CO)_5 L + CO$$

M = Cr, Mo, W; L = σ donor ligand

was studied as a function of pressure for various L and solvents. For all reactions investigated the photosubstitution quantum yield decreased with increasing pressure and resulted in significantly positive volumes of activation. Under the assumption that nonradiative deactivation is relatively independent of pressure, the apparent positive volumes of activation fit well into the picture of a dissociative mechanism, i.e., release of CO. This dissociation leads to a trigonal-bipyramidal $M(CO)_5$ fragment that can either recombine with CO, be trapped by a solvent molecule or bind to L. The difference in the pressure dependence for the recombination with CO or combination with L can be used to account for the observed activation volumes.

Another series of complexes of the type $W(CO)_4L$, involving either a ligand field (L = pyridine) or a

metal to ligand charge-transfer state (L = 4-acetyland 4-cyanopyridine) as the lowest excited state, has been studied (entries 1293-1295). In these cases the effects of pressure on both the photosubstitution quantum yield and the excited-state emission lifetime were measured. The model suggests that most of the observed photochemistry in the MLCT state occurs via back population to the LF state. The larger pressure effects observed for the 4-acetyl- and 4-cyanopyridine complexes are consistent with the volume difference expected between the LF and MLCT excited states. The overall positive volumes of activation support a dissociative substitution mechanism as a result of LF excitation.


Numerous data are now available for photosubstitution reactions of the type (entries 1250–1259, 1262, 1263, 1276, 1277, 1296, and 1297)

$$M(CO)_4(phen) + L \rightarrow fac-M(CO)_3(phen)L + CO$$

 $M = Cr, Mo, W; L = PMe_3, PEt_3$

There has been some controversy in the literature concerning the nature of the photosubstitution mechanism originating from the lower lying MLCT state. On one hand it was assumed that the observed photosubstitution proceeds dissociatively from the LF excited state, i.e., MLCT excitation is followed by thermal back population of the LF state. On the other hand it was argued that the MLCT states themselves are photoactive and could in principle undergo an associative substitution reaction. To resolve this apparent discrepancy, the effect of pressure on the above reaction as a function of irradiation wavelength, i.e., LF and MLCT excitation, was studied.

The first results for L = PEt₃ clearly suggested an associative substitution mechanism for the Mo and W complexes when irradiated directly into the MLCT bands. This is evidenced by negative ΔV^{\dagger} values for 546-nm irradiation, in contrast to the positive ΔV^{\dagger} values for ligand substitution when LF bands are excited with 366-nm light. In the case of the smaller Cr complex, MLCT excitation still gave a small positive value of ΔV^{\dagger} indicative of a dissociative mechanism. The associative character of the MLCT states could be accounted for in terms of partial transfer of electron density from the metal to the phen ligand, by which the metal became more electrophilic and could undergo an associative nucleophilic attack by the entering ligand.

More recently, in a series of studies 329,415,416 there has been a systematic investigation of the influence of the metal center, entering nucleophile, and irradiation wavelength as a function of pressure for various M (M = Cr, Mo, W) and PR $_3$ (R = Me, Bu n , Ph). The competition between dissociative LF and associative MLCT ligand substitution could be tuned by selecting the appropriate metal and entering ligand, ligand concentration, and pressure. The typical results displayed in Figure 12 show how an increase in irradiation wavelength from LF to MLCT excitation results in a changeover in the effect of pressure on Φ , viz., a decrease in Φ with increasing pressure for irradiation at 313 and 366 nm, in

Figure 12. Plot of the natural logarithm of the quantum yield versus pressure at different excitation wavelengths for the reaction $M(CO)_4(phen) + PR_3 \rightarrow (h\nu)$ fac- $M(CO)_3(PR_3)(phen) + CO$ (M = Mo, R = Buⁿ). (From ref 416.)

contrast to an increase in Φ with increasing pressure for irradiation at 436–546 nm. The results showed that the size of the metal center and the entering nucleophile determine the irradiation wavelength at which a mechanistic changeover occurs. The bulkier the entering nucleophile, the more difficult it is to observe an associative mechanism resulting from MLCT excitation.

One sytem was studied that involves MLCT photochemistry of a metal–metal-bonded complex (entries 1298 and 1299). Irradiation into the MLCT band of $(CO)_5ReMn(CO)_3(\alpha\text{-diimine})$ in CH_2Cl_2 produces $Re(CO)_5Cl$ and $Mn(CO)_3(\alpha\text{-diimine})Cl$, whereas the substitution product $(CO)_5ReMn(CO)_2(PPh_3)(\alpha\text{-diimine})$ is formed in the presence of a strong nucleophile (PPh_3) . It was suggested that both photochemical reaction paths involve the initial photodissociation of CO from the parent complex. The apparent volumes of activation are very similar and are large positive values, and thus underline the concept of a common reaction step that involved the primary release of CO and support the dissociative nature of the photochemical process.

In the above presentation the importance of a possible influence of pressure on photophysical processes for the interpretation of the apparent volume of activation became obvious. This is of particular interest with respect to the partial molar volume of the excited state from which the photochemical process occurs. For this reason data for the effect of pressure on the excited-state lifetime and the associated activation volumes for radiative and nonradiative deactivation are included in the table (entries 1341–1395). For the quenching of the triplet excited state ³[Cu(dpp)₂⁺]* the pressure effects are very small, which indicates the absence of solvation/ desolvation effects or that the MLCT state is significantly distorted from the ground state. Quenching by Cr(III) complexes shows a larger positive volume of activation in the case of the Cr(hfac)₃ species, which can be related to the increase in solvent viscosity, since this quenching process approaches the diffusion limit. In contrast, the significantly negative volume of activation for the quenching by Cr(tfac)₃

is dominated by an electron-transfer mechanism. Quenching of $Ru(bpy)_3^{2+}$ in the excited state by different quenchers (entries 1373-1382) results in positive activation volumes, of which some are relatively high values. These can be interpreted in terms of an electron-transfer mechanism that involves precursor formation between the excited state and the quencher.

The application of pressure to CH_2Cl_2 solutions of either $Cu(dmp)_2^+$ or $Cu(dpp)_2^+$ led to systematic decreases in the emission lifetimes. The dominant deactivation pathways are nonradiative, and the observed pressure effects can be accounted for in terms of a unimolecular weak coupling mechanism. Other examples for which relatively small pressure effects were observed are $Pt_2(\mu-\eta^2-H_2P_2O_5)_4^{4-}$ and $Ir_2-(\mu-\eta^2-pyrazolate)_2(COD)_2$ (entries 1389-1395) and a detailed interpretation of the reasons for these observations is given in the literature.

The effect of pressure on the distribution of electronic states has been investigated for the equilibria and dynamics of relaxation between the high spin/ low spin configurations of a series of $Fe^{II}L_n$ complexes (entries 1300-1322). Reaction volumes as large as 16 cm³ mol⁻¹ have been reported for the low spin to high spin transition, depending on the nature of L. It has been argued from X-ray structural data that the intrinsic volume difference should be as large as 25-30 cm³ mol⁻¹,³³⁸ such that the transition must be accompanied by an increase in electrostriction, i.e., a more tightly solvated high spin state. A combination of these data with the overall reaction volume data enables activation volumes to be calculated for the spin change in both directions. Many of these reactions exhibit absolute activation volumes close to 5 cm³ mol⁻¹, which means that the spin crossover for these species follows a common mechanism via a transition state located midway between the high and low spin states.

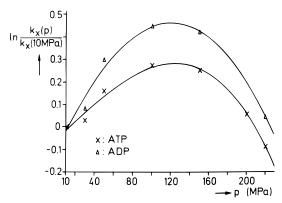
K. Reactions in Supercritical Fluids

Investigation of the potential of supercritical fluids as media for chemical separation and as reaction media for chemical transformations, including those having environmental relevance has become a subject of increasing activity in recent years.8,417-420 Both catalytic and oxidation processes have been investigateď. 421-424 To understand the underlying reaction mechanisms of chemical transformations in supercritical fluids, kinetic studies are essential and have been performed in a limited number of cases. Although activation volumes of chemical reactions in the liquid state have been determined for several decades, relatively little is known about activation volumes in supercritical fluids. There is obviously a difference, in part due to the sensitivity to pressure of the density of a supercritical medium compared with normal condensed liquid media. While activation volumes in liquids are characterized typically by values between -50 and +50 cm³ mol⁻¹, they can be thousands of cm³ mol⁻¹ in supercritical fluids, as has been demonstrated for the thermal decomposition of $\alpha\text{-chlorobenzyl}$ methyl ether 425 and for other reactions that have been reviewed recently. 418,419 Activation volumes have been measured for a few simple cases in which for instance ligand substitution reactions are induced by flash photolysis. ^{216,426} Ring-closure reactions of the type

$$M(CO)_5L-L \rightarrow M(CO)_4(L-L) + CO$$

M = Mo, W:

$$L-L = 1,10$$
-phenanthroline, $2,2'$ -bipyridine

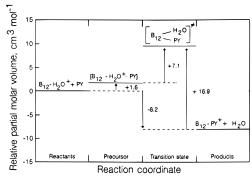

exhibit volumes of activation as large as +7 L mol $^{-1}$ under conditions near the critical point in supercritical ethane and CO_2 . The results were interpreted 216 as evidence for a large repulsive contribution to the activation volume associated with the dissociation of CO during the ring-closure reaction. Other examples referred to in the literature 216 include the tautomerization of 2-hydroxypyridine to 2-pyridone and the hydrolysis of methoxynaphthalene in supercritical fluids. These reactions are accompanied by large negative volumes of activation which are associated with an increase in electrostriction.

It follows from these few examples that reaction and activation volume data in supercritical fluid solvents can be orders of magnitude different from those in the liquid state. This is not unexpected if we consider the large difference in partial molar volumes of species in the liquid state relative to the gaseous state. It is reasonable to anticipate considerable progress in this field in the future.

L. Bioinorganic and Biological Reactions

High-pressure kinetic and thermodynamic experiments have been performed on a number of bioinorganic and bioorganic systems that are of biological and biochemical interest and significance. This overall topic has been reviewed in recent years in contributions to a number of monographs. 3.4.6–8.11 The available information focuses on structural effects, hydrolysis processes, substitution reactions, ligation of small molecules by macromolecules, enzyme catalysis, and electron-transfer processes. A selection of these processes will be described and in some cases where a volume profile is available these will be interpreted in some detail.

Conformational changes and folding of proteins can be induced by pressure.^{5,6-8,23} It was recently reported⁴²⁷ that the unfolding of staphylococcal nuclease is accompanied by a volume change of -77 cm³ mol^{−1}. The associated activation volume for folding (+92 cm³ mol⁻¹) is much larger than for unfolding (+20 cm³ mol⁻¹). The pressure-induced unfolding arises from a combination of increased solvation and decreased excluded volume in the unfolded state. In a similar way the helix-coil equilibrium in DNA was found to be very pressure sensitive as a result of solvent interactions in the stabilization and formation of DNA helices. The activation volume for helix formation was found to be $-11.8 \text{ cm}^3 \text{ mol}^{-1}$, as compared to a value of +39.9 cm³ mol⁻¹ for helix unfolding. 428 The authors propose that the activation volume for the forward reaction may arise from the volume change due to charging of the cytosine residues and the formation of base-stacking interactions. The large positive activation volume of strand

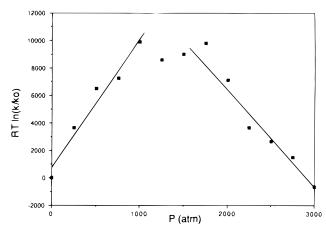

Figure 13. Logarithm of the normalized rate constants for the hydrolysis of ATP and ADP at 353 K versus pressure. (From ref 431.)

separation may be a consequence of poor solvent packing of the DNA duplex major groove during dissociation. From the effect of pressure on phospholipid translocation in lipid bilayers, 429 for which a volume of activation of $+17 \text{ cm}^3 \text{ mol}^{-1}$ was measured, information on the mechanism by which phospholipids spontaneously flip-flop in membranes could be obtained. The formation of nucleic acid homoduplexes was also found to be accompanied by significant volume changes (between -17 and +7 cm³ mol⁻¹); the individual values depend on the degree of hydration of the different conformations that can be produced. 430 Other examples include monomerdimer, tetramer-dimer, octamer-dimer, and octamer-tetramer equilibria all of which are very pressure sensitive (entries 1511-1522).

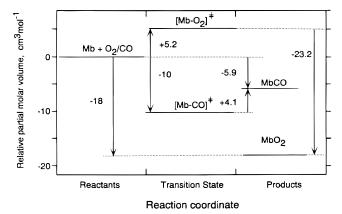
Several hydrolysis reactions of biological interest were investigated at elevated pressures. The hydrolyses of ATP and ADP exhibit a peculiar pressure dependence as shown in Figure 13. 431 The increase in rate with increasing pressure in the lower pressure range is ascribed to rate-determining attack by solvent (water). At higher pressure there is a change in rate-limiting step, which is then suggested to be a prior protonation step that is accompanied by partial charge neutralization resulting in a positive volume of activation. Hydrolysis reactions of nucleotide bound phosphate are in general accelerated by pressure, and ΔV^{\dagger} values of between -10 and -15 cm³ mol $^{-1}$ have been reported. 432

There are a number of important biological processes in which ligand substitution reactions on transition metal centers play an important role. One of these concerns the antitumor activity of platinum complexes, for which it is generally accepted that substitution reactions involving the metal complexes and DNA moieties play a key role in such processes. Such substitution reactions in general follow an associative mechanism and are therefore usually characterized by markedly negative volumes of activation, i.e., the reactions are accelerated by pressure. A detailed account of the pressure dependence of such reactions is given in section 2.B.

A further example concerns the substitution reactions of cobalamins (vitamin B_{12}), reactions which have attracted considerable attention from kineticists (entries 1396-1411). In these systems the usually kinetically inert Co(III) ion is labilized considerably


Figure 14. Volume profile for the reaction $B_{12}-H_2O^+ + pyridine$. (From refs 351 and 352.)

by the corrin ring, and there has been some disagreement in the literature concerning the mechanism of these substitution reactions. The volume of activation results available for complex-formation and reverse aquation reactions of the type


$$B_{12}-H_2O^+ + L^{n-} \rightarrow B_{12}-L^{(1-n)+} + H_2O$$

are all in support of a dissociative (I_d) substitution mechanism. For the reaction of B_{12} – H_2O^+ with pyridine, 354 the observed rate constants $k_{\rm obs}$ reached a limiting value at high pyridine concentrations, which was interpreted as evidence for a limiting D mechanism. However, later work^{351,352} showed that the curvature of the plot of $k_{\rm obs}$ versus concentration must be due to a precursor formation step preceding the dissociative interchange (I_d) step. The nonlinear concentration dependence enabled a kinetic separation of the precursor formation constant and the ratedetermining interchange rate constant to be made, such that a detailed volume diagram for the overall process could be drawn (see Figure 14). The volume profile clearly illustrates the dissociative character of the transition state.

The mechanism of the binding of small molecules such as O₂ and CO to ferrous heme and hemoproteins has been the focus of many investigations in recent years. Model heme complexes were usually employed in an effort to clarify our understanding of the reactions of the corresponding proteins. Two model heme systems and various neutral ligands were used to study the bimolecular addition to the five-coordinate ferrous model heme complexes (entries 1446-1450) using two different photolysis techniques. The reported ΔV^{\dagger} data correlate well with the addition rate constants: for the slower reactions, bond formation is rate determining and results in negative ΔV^{\dagger} values; for the faster reactions, the processes become diffusion controlled and are slowed by increasing pressure due to the large increase in solvent (toluene) viscosity. In a subsequent study,³⁶⁴ the reaction of CO with MCPH was studied as a function of pressure in a very viscous medium. The data reported in Figure 15 clearly show a changeover in rate-determining step from bond formation to control by diffusion upon increasing the pressure, i.e., from a ΔV^{\dagger} value of -9.6 to a value of +7.1 cm³ mol⁻¹. This is an example of a changeover from activation control to diffusion control where the mechanistic diagnosis

Figure 15. Plot of $RT(\ln(k/k_0))$ versus pressure for the reaction of CO with the intermediate formed by nanosecond laser flash photolysis of MCPH-CO. (From ref 364.)

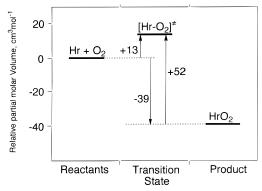


Figure 16. Volume profile for the reactions of CO and O_2 with myoglobin at 298 K. (From ref 360.)

has emerged from kinetic measurements at high pressures.

Similar techniques were applied to study the effect of pressure on the bimolecular association rate constant for the reaction of sperm whale myoglobin with a series of neutral ligands in water (entries 1416–1426). It follows from the data that only the reaction with CO is characterized by a negative ΔV^{\dagger} value, which is in line with a bond formation process. The positive ΔV^{\dagger} values found for the other ligands were ascribed to the entry of the ligand into the protein pocket, which will be accompanied by pronounced desolvation and presumably conformational changes on the protein chain. The effect of pressure on the escape of the ligand from the proteinseparated pair, resulted in distinctly positive ΔV^{\dagger} values (entries 1426-1436). These values are consistent with the notion of a "gate" that operates in both directions of the process.

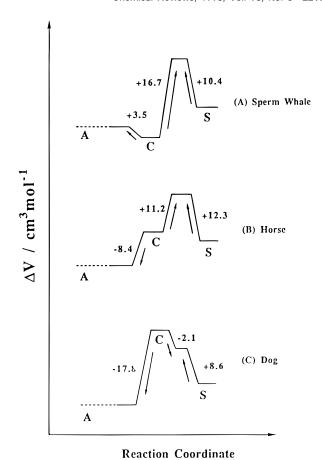
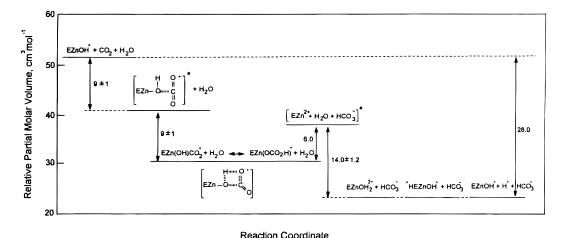

The large difference in ΔV^{\dagger} values observed for the binding of O_2 and of CO to deoxymyoglobin stimulated the need to develop a complete volume profile for both systems. The profiles are shown in Figure $16;^{360}$ that for the binding of O_2 is characterized by a substantial increase in volume in proceeding from the reactant state to the transition state, followed by a significant volume reduction when the product state is reached. The observed volume increase was ascribed to rate-determining movement of O_2 through

Figure 17. Volume profile for the reaction of hemerythrin with O_2 . (From ref 356.)

the protein to the heme pocket, which may involve hydrogen bonding to the distal histidine as well as desolvation. This step is followed by rapid bond formation with the Fe(II) center, during which the change in spin state from high to low, the movement of the Fe(II) center into the porphyrin plane, and the associated conformational changes account for the drastic volume collapse. The overall reaction volume of -18 cm³ mol⁻¹ demonstrates the large volume reduction caused by the binding of O₂. The volume profile for the binding of CO shows a considerable volume decrease on going from the reactant to the transition state, which has been attributed to ratedetermining bond formation. The reverse bond cleavage reaction is accompanied by a volume decrease, which may be related to the different bonding mode of CO compared with O₂. This difference in bonding mode must also account for the much smaller absolute reaction volume observed in this case. It should be mentioned that such measurements and their interpretation were criticized by Frauenfelder et al.434 on the basis of low-temperature high-pressure investigations at <160 K in 75% glycerol solutions. They considered the influence of conformational substates in the interpretation of the pressure data, to account for the different volume changes found for O₂ and CO.

A volume profile was also obtained (Figure 17) for the binding of dioxygen to hemerythrin (entries 1412 and 1413). The ΔV^{\dagger} values for the "on" and "off" reactions as well as the overall reaction volume are about twice as large as for the corresponding myoglobin case. In the hemerythrin system two Fe(II) centers are oxidized to Fe(III) during which dioxygen is reduced and bound as hydroperoxide to one Fe-(III) center. The $\Delta V_{\text{on}}^{\dagger}$ value can partly be accounted for in terms of desolvation of oxygen during its entrance into the protein. The value is, however, such that it suggests some form of dynamic "breathing" motion of the protein that momentarily causes an opening up of a cleft and permits oxygen to enter the protein. The marked volume decrease that occurs following the formation of the transition state can be ascribed to the oxidation of the iron centers and the reduction of O_2 to O_2^{2-} . The fact that the overall volume reduction is almost double that observed for the oxygenation of myoglobin may indicate similar structural features in oxyhemerythrin and oxymyoglobin. This would suggest that a description of the bonding mode as $Fe^{III}{-}O_2{}^-$ or $Fe^{III}{-}O_2H$ (H from


Figure 18. Activation volume diagrams for the binding of O_2 to myoglobins. (From ref 361.)

histidine E7) instead of $\rm Fe^{II}-O_2$, may be more appropriate for oxymyoglobin. Eyring and co-workers studied the uptake of dioxygen by deoxymyohemerythrin and found positive $\Delta\,V^{\dagger}$ values for both the uptake and release processes (entries 1414 and 1415). They also concluded that the positive value for the uptake reaction must be due to a different rate-determining step that occurs prior to Fe–O bond formation.

The effect of pressure on the binding kinetics of O_2 and CO to myoglobin was studied in more detail on a milli-, micro-, and nanosecond time scale for sperm whale, horse, and dog myoglobin. The results were analyzed quantitatively in terms of the following three-step mechanism:

$$A(MbL) \leftrightarrow B(Mb \cdot L) \leftrightarrow C(Mb \cdot \cdot \cdot L) \leftrightarrow S(Mb + L)$$

where A represents the bound species, B the short-lived geminate pair, C the longer lived geminate pair, and S the entirely separated species. The volume profiles for all three myoglobins may be drawn (Figure 18); from these it was concluded that the $\rm O_2$ diffusion step within the protein matrix is quite different among the three Mb species. 361 It was further suggested that the activation volumes are very sensitive to the amino acid residues adjacent to and flanking the ligand path channel. In the case of CO binding (entries 1425-1441), the overall $\Delta\,V^{\dagger}$ was negative, which is consistent with the rate-determining bond formation step.

Figure 19. Volume profile for the carbonic anhydrase catalyzed hydration of CO_2 and dehydration of HCO_3^- at 298 K. See ref 369 for details.

The binding of CO to horseradish peroxidase (entries 1458-1469) was studied as a function of pressure, temperature, and solvent. The observed ΔV^{\dagger} is the sum of several components: binding of CO, subsequent conformational changes occurring in the protein, and the reorganization of the solvation shell. The authors³⁶⁵ conclude that these events are interconnected and difficult to analyze independently. The large variation in ΔV^{\dagger} under different experimental conditions suggests that solvent reorganization is the predominant factor which drives the response of the system. The binding of CO to various reduced hemoproteins, including several cytochrome P450 variants, chloroperoxidase and lactoperoxidase, was studied under pressure (entries 1470-1485). The activation volumes depend on the nature of the proximal axial heme ligand; the values are relatively small (+1 to +16 cm 3 mol $^{-1}$) for cysteine (S $^-$) ligand hemoproteins, and markedly negative ($-3 \text{ to } -36 \text{ cm}^3$ mol⁻¹) for histidine (N) ligand proteins. These results suggest that the CO binding transition state of the S ligand class has a molecular conformation similar to that of the ground state. In the case of the histidine class, the transition state appears to involve protein conformational changes and/or solvational changes. The effect of substrate analogues on the kinetics of recombination of CO to ferrous cytochrome P450_{CAM} has been studied as a function of pressure (entries 1479-1485). A small positive ($+4 \text{ cm}^3 \text{ mol}^{-1}$) ΔV^{\dagger} value was found for the binding of CO to the substrate free protein. However, the binding of d-camphor and some camphor analogues into the heme pocket resulted in considerably reduced ΔV^{\dagger} values to negative quantities (-14 to -32 cm³ mol⁻¹). This trend suggests that iron-ligand bond formation is the rate-limiting process for the substrate-bound protein.

A number of systems of biological interest have been studied in which the kinetics of molecular association and a subsequent binding step were monitored as a function of pressure. For instance the binding of NADH to liver alcohol dehydrogenase is characterized by significantly positive volumes of activation (entries 1486–1488), i.e., the binding rate is decelerated with increasing pressure. No explanation for this observation was offered. Other examples

studied include: binding equilibria in the *lac* repressor system, 435 ribosomal subunit association of Escherichia coli,436 and substrate affinity of an immobilized glucoamylase. 437 Dissociation of the cytochrome *b*₅-porphyrin cytochrome *c* complex is accompanied by a large volume reduction (entry 1492). This has been ascribed to the removal of solvent from the interface of the two molecules on closest approach, which will result in the rehydration of the bare surface charges upon separation. The effect of pressure has also been monitored during the thermal inactivation of taka-amylase A, and activation and reaction volume data were reported. 438 Ligand binding and kinetic behavior of butyrylcholinesterase from human plasma were also studied under high pressure.439 Volume changes were determined and the kinetic data showed that binding of substrate to the enzyme led to a pressure-sensitive enzyme conformational state, which did not participate in the catalytic cycle.

The effect of pressure on the CO stretch mode of substrate-free cytochrome P450 was studied; this provided information on the conformational substates of the protein. In another study In anothe

The effect of pressure on some enzyme-catalyzed reactions has been investigated. Activation volumes of subtilisin Carlsberg in organic solvents, particularly with the enzyme hydrated, have a larger magnitude than in aqueous solution. It follows that the primary effect of pressure is to enhance the stripping of water from an enzyme in polar solvents and leads to decreased enzyme activity. Volume profiles have been generated for some catalytic systems. In the case of the catalytic activity of carbonic anhydrase, a systematic study of the effect of pressure on all the accessible reaction steps enabled the establishment of a complete volume profile as shown in Figure 19. The volume changes associated with the "CO2 uptake/decarboxylation"

step and the ligand substitution process (HCO $_3^-$ for H $_2$ O), exhibit different trends with respect to the location of the transition state. In the first part of the catalytic cycle the transition state is located approximately halfway between the reactant and product states, which is in good agreement with the structure of the suggested transition state. The subsequent ligand substitution process is characterized by a transition state that has a significantly higher partial molar volume than either the reactant or product states, which is indicative of a dissociative substitution mechanism. Overall this is a complex system and a complete explanation is best obtained by consulting the original literature.

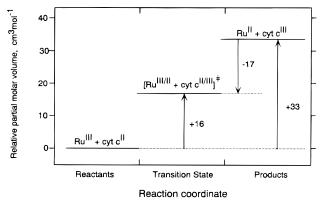
Several investigators have applied high-pressure techniques in the study of electron-transfer reactions in biological systems. In one of the earliest studies, 442 the reaction rates of the multiheme hydroxylamine oxidoreductase were studied as a function of pressure. By way of comparison, the binding of CO to the dithionite-reduced enzyme was characterized by negative ΔV^{\dagger} values (between -14 and -36 cm³ mol^{-1}), whereas the reduction of the c hemes of the enzyme by NH₂OH was characterized by positive or negative ΔV^{\dagger} values, depending on the selected temperature and composition of the solvent. In other work⁴⁴⁴ the effect of pressure on the electron-transfer kinetics in and around the chloroplast cytochrome bf complex was studied. For the reduction of P700⁺ (reaction center of Photosystem I) by reduced plastocyanin, ΔV^{\dagger} was found to be +9.6 cm³ mol⁻¹, compared with a value of -14 cm³ mol⁻¹ for the reduction of oxidized plastocyanin by ascorbate. The kinetics of oxidation of decyl plastoquinol by the bf complex gave rise to a ΔV^{\ddagger} value of $+18 \text{ cm}^3 \text{ mol}^{-1}$. The complexity of the systems made an accurate interpretation of the observed pressure effects very difficult, and therefore stimulated further work on less complicated and perhaps more "ideal" systems.

A challenging question concerns the feasibility of the application of high-pressure kinetic and thermodynamic techniques in the study of "long distance" electron-transfer reactions. Do such processes exhibit a characteristic pressure dependence, and to what extent can a volume profile analysis reveal information on the intimate mechanism of the electron-transfer process?

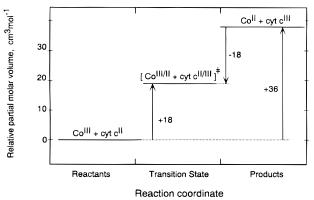
The systems investigated were intermolecular and intramolecular electron-transfer reactions between ruthenium complexes and cytochrome c (see entries 1495-1508). A series of intermolecular reactions between chelated cobalt complexes and cytochrome c was also studied (see entries 1493 and 1494). A variety of high-pressure experimental techniques, including stopped-flow, flash photolysis, pulse radiolysis, and voltammetry, were employed in these investigations. As the following presentation will show, a remarkably good agreement was found between the volume data obtained with the aid of these different techniques, which clearly demonstrates the complementariness of these methods for the study of electron-transfer processes.

Application of pulse-radiolysis techniques revealed that the following intramolecular and intermolecular

electron-transfer reactions all exhibit a significant acceleration with increasing pressure. The reported volumes of activation are $-17.7\pm0.9,\,-18.3\pm0.7,\,$ and -15.6 ± 0.6 cm³ mol $^{-1}$, respectively for the three reactions, and denote a marked volume reduction as reaction proceeds from the reactant to the transition state. 376


$$\begin{split} (\mathrm{NH_3})_5\mathrm{Ru^{II}} - (\mathrm{His33})\mathrm{cyt}\ c^{\mathrm{III}} &\rightarrow \\ & (\mathrm{NH_3})_5\mathrm{Ru^{III}} - (\mathrm{His33})\mathrm{cyt}\ c^{\mathrm{II}} \\ (\mathrm{NH_3})_5\mathrm{Ru^{II}} - (\mathrm{His39})\mathrm{cyt}\ c^{\mathrm{III}} &\rightarrow \\ & (\mathrm{NH_3})_5\mathrm{Ru^{III}} - (\mathrm{His39})\mathrm{cyt}\ c^{\mathrm{II}} \\ \mathrm{Ru^{II}} (\mathrm{NH_3})_6^{\ 2^+} + \mathrm{cyt}\ c^{\mathrm{III}} &\rightarrow \mathrm{Ru^{III}} (\mathrm{NH_3})_6^{\ 3^+} + \mathrm{cyt}\ c^{\mathrm{II}} \end{split}$$

At this stage it was uncertain which mechanistic or other features the negative volumes of activation actually represented since overall reaction volumes were not available. However, data in the literature 268 suggested that the oxidation of $Ru(NH_3)_6{}^{2+}$ to $Ru(NH_3)_6{}^{3+}$ is accompanied by a volume increase of ca. 30 cm 3 mol $^{-1}$, which would mean that the activation volumes quoted above could principally be a consequence of volume changes associated with the oxidation of the ruthenium redox partner.


With the purpose of determining the overall reaction volumes and thereby locating the position of the transition state along the reaction coordinate, a series of intermolecular electron-transfer reactions of cyt c with pentaammine ruthenium complexes was studied. The sixth ligand on the ruthenium complex was selected in such a way that the overall reaction driving force was sufficiently low so that the reaction kinetics could be studied in both directions. The substituents chosen were isonicotinamide (isn), 4-ethylpyridine (etpy), pyridine (py), and 3,5-lutidine (lut) (see entries 1498–1505). The overall reaction can be formulated as

$$\begin{aligned} \text{Ru}^{\text{III}}(\text{NH}_3)_5 \text{L}^{3+} + \text{cyt } c^{\text{II}} &\leftrightarrow \\ \text{Ru}^{\text{II}}(\text{NH}_3)_5 \text{L}^{2+} + \text{cyt } c^{\text{III}} & k_{\text{f}}, k_{\text{b}} \end{aligned}$$

For all the systems investigated the forward reaction was significantly decelerated by pressure, whereas the reverse reaction was equivalently accelerated by presssure. The absolute values of the volumes of activation for the forward and reverse processes are indeed very similar, demonstrating that a similar rearrangement occurs in order to reach the transition state. In addition, the overall reaction volume for these systems could be determined spectrophotometrically by recording the spectrum of an equilibrium mixture of components as a function of pressure, and electrochemically by recording cyclic and differential pulse voltammograms as a function of pressure (entries 1537–1541).³⁸¹ A comparison of the reaction volume data demonstrates the good agreement between the values obtained from the difference in the volumes of activation for the forward and reverse reactions, and those obtained thermodynamically. The values show that $|\Delta V^{\dagger}| \approx 0.5 |\Delta V|$, i.e., the transition state lies approximately halfway between

Figure 20. Volume profile for the reaction of an isonicotinamide pentaammine ruthenium complex with cytochrome c at 298 K. (From ref 374.)

Figure 21. Volume profile for the reversible interaction of $Co^{II/III}$ (amines) with cyt $c^{III/II}$ at 25.0 °C at neutral pH. (From refs 372 and 445.)

the reactant and product states on a volume basis, and obviously for electron transfer in either direction. The typical volume profile in Figure 20 illustrates these findings.

Similar results were recently obtained for the redox reactions of a series of cobalt amine complexes with cytochrome $c.^{372,445}$ In general a good agreement exists between the kinetically and thermodynamically determined parameters, and the typical volume profile in Figure 21 once again demonstrates the location of the transition state with respect to the reactant and product states.

At this point it may be important to ask the question, to what may these volume changes be attributed? It was always argued that the major volume change arises from changes on the redox partner and not on cytochrome c itself. This was suggested by the fact that the change in partial molar volume associated with the oxidation of the Ru(II) and Co(II) complexes investigated, as obtained from electrochemical and density measurements, almost fully accounted for the observed overall reaction volume. Thus the reduction of cytochrome c can only make a minor contribution toward the overall volume change.

These arguments were apparently not compatible with electrochemical results obtained by Cruanes et al. 382 who reported that the reduction of cytochrome c is accompanied by a volume reduction of 24 cm³ mol⁻¹ (entries 1542–1552). This value is so large

that it represents virtually all of the total of the reaction volume obtained for the reactions investigated and discussed above. A reinvestigation of the electrochemistry of cytochrome c as a function of pressure, using cyclic and differential pulse voltammetric techniques, 381 yielded a reaction volume of -14.0 ± 0.5 cm 3 mol $^{-1}$ for the reaction.

cyt
$$c^{\text{III}} + \text{Ag(s)} + \text{Cl}^- \rightarrow \text{cyt } c^{\text{II}} + \text{AgCl(s)}$$

A correction for the contribution from the reference electrode could be made on the bases of the data published by Tregloan et al.47 and of a series of measurements of the potential of the Ag/AgCl (KCl saturated) electrode relative to the Ag/Ag⁺ electrode as a function of pressure. The contribution of the reference electrode turned out to be -9.0 ± 0.6 cm³ mol^{−1}, from which it then followed that the reduction of cytochrome c^{III} is accompanied by a volume decrease of $5.0 \pm 0.8 \text{ cm}^3 \text{ mol}^{-1}$. This contribution is much smaller than reported by Cruanes et al.382 and is also consistent with the contributions from other arguments referred to above. Thus it can be concluded that the observed activation and reaction volumes mainly arise from volume changes on the ruthenium and cobalt complexes, which in turn will largely be associated with changes in electrostriction in the case of the ammine complexes. The oxidation of the Ru(II) ammine complexes will be accompanied by a large increase in electrostriction and almost no change in the metal-ligand bond length, whereas in the case of the cobalt complexes a significant contribution from intrinsic volume changes associated with the oxidation of Co(II) will partially account for the observed effects.376

One system has been investigated in which the effect of pressure on the electron-transfer rate constant yielded information relevant to the actual electron-transfer route. The effect of pressure on distant electronic coupling in Ru(bpy)₂(im)-modified His33 and His72 cytochrome *c* derivatives, for which the electron transfer from Fe(II) to Ru(III) is activationless, was investigated (entries 1495–1497).³⁷³ In the case of the His33-modified system the electrontransfer rate constant exhibited no dependence on pressure within experimental error limits. However, the rate constant for the His72-modified protein increased with increasing pressure, corresponding to a ΔV^{\dagger} value of -6 ± 2 cm³ mol⁻¹. Since this value is exactly opposite that expected for the reduction of Ru-(III), the result was interpreted as an increase in electronic coupling at elevated pressure. The application of moderate pressures will cause a slight compression of the protein that in turn shrinks the through-space gaps, key units in the electron-tunneling pathway between the heme and His72. A decrease of 0.46 A in the tunneling path length at a pressure of 150 MPa can account for the observed increase in rate constant. This in turn means that there is an average decrease in the space gap of 0.1 A. The absence of an effect for the His33-modified species is understandable since electronic coupling through covalent and hydrogen bonds will be less pressure sensitive than coupling via van der Waals gaps. 373

Very recently⁴⁴⁶ Morishima and co-workers investigated the effect of pressure on electron-transfer rates in zinc/ruthenium modified myoglobins. The rate constant for electron transfer from photoexcited ³ZnP* to the Ru(NH₃)₅³⁺ moiety of the protein decreased from 5×10^7 to 55 s^{-1} upon increasing the donor-acceptor distance from 9.5 to 19.3 Å when the ruthenium complex is attached to His70 and His83, respectively. This decrease in rate constant was accompanied by an increase in the associated volume of activation from +4 to +17 cm³ mol⁻¹. The authors account for this difference in terms of the effect of pressure on the electronic coupling term H_{AB}. However, in the context of the results reported above and the volume changes associated with the reduction of Ru(III) ammine complexes, the gradual increase in ΔV^{\dagger} with increasing donor-acceptor distance and with decreasing rate constant could be a clear demonstration of "early" (for the fast) and "late" (for the slow reactions) transition states. Volume changes mainly associated with changes in electrostriction on the ruthenium ammine center will control the solvent reorganization and so account for the "early" (reactantlike) and "late" (product-like) transition states. These results and the conclusions based upon them illustrate the insight that can be obtained regarding the mechanism of long-distance electron-transfer reactions from the application of high-pressure techniques.

M. Theoretical Calculations and Modeling

Computation of partial molar volumes and radii based on overlapping van der Waals spheres has been reported for a wide range of inorganic molecular ions. 447a The results were compared with experimentally determined partial molar volumes and thermochemical radii. The correlations are remarkably good and may be used to estimate with some confidence the partial molar volume of ions which have not been experimentally determined. The authors venture that the accuracy of the calculated partial molar volumes may be sufficient to calculate molar volumes of transition states.

Various analytical equations have been developed to analyze the dependence of observed rate constants on pressure. These are especially employed when plots of $\ln k$ versus pressure deviate from linearity, i.e., when the volume of activation is a function of pressure.

The solvent exchange processes on metal ions and complexes described in section 2.A present ideal reactions to simulate and predict activation volumes theoretically since solvent exchange is a symmetrical reaction and does not involve overall solvational changes. The activation volumes for solvent exchange on the divalent cations of the first row of transition metals determined experimentally exhibit clear evidence for a mechanistic changeover along the series, i.e., from more associative for the earlier, larger cations to a more dissociative one for the later, smaller cations. It has been claimed on the basis of theoretical calculations seen claimed on the basis of theoretical calculations volume data could be considered faulty, and arguments were presented against a

mechanistic changeover along the series. Additional theoretical calculations were needed in order to investigate the validity of the mechanistic proposals that were based on calculations, in an endeavor to resolve the disparate conclusions.

The original studies^{384–387,448} involved ab initio selfconsistent field (SCF) calculations of the binding energies, ligand-field effects, water exchange reactions, and exchange mechanisms of hexahydrated divalent first row transition metal cations. In subsequent work, 388,449 Rotzinger succeeded in computing the structures of the transition states and intermediates formed during the water exchange reactions of the first row transition metals with ab initio methods at the Hartree-Fock or CAS-SCF (complete active space—SCF) level. It was now possible to generate A, I_a, I_d, and D reaction pathways, and to optimize the structures of the transition and intermediate states. Furthermore, the calculated bond length changes that occurred during the activation process were entirely consistent with the activation volume data, and indicated that an associative interchange mechanism can operate for some metal ions, in contrast to the previous prediction.³⁸⁷ Density functional theory has also been applied successfully to describe the solvent exchange mechanism for aquated Pd(II), Pt(II), and Zn(II) cations. 389,450 Molecular dynamics simulation studies have been performed on the structure of the first hydration shell of some trivalent lanthanide ions, on the change in coordination number decreasing from 9 to 8 along the series, and on the mechanism of water exchange between hydrated lanthanide ions and bulk water.451 The latter study demonstrated an excellent agreement with the observed high-pressure kinetic effects, i.e., experimental activation volumes. Finally, molecular dynamics simulations and density functional theory were applied to model water exchange reactions in the second coordination (first solvation) sphere on hexaaquachromium(III).452

3. Volume Data for Organic Reactions

A. General Remarks

Our approach has basically been the same as that offered in our previous reviews. 1,2 Thus, since highpressure kineticists have in many cases measured reaction volumes for the processes of interest as well, these results have been recorded in the Remarks column of Table 2. The results of Holroyd's experiments (in which dynamics led him to deduce reaction volumes) are included in this section. In other cases in which the reaction volume was of primary or even exclusive concern, the data are reported separately (in Table 4). The entry under T (°C) in Tables 2–4 reads "ambient" in many instances; this word was employed whenever the original authors used it (or an equivalent such as room temperature), or if no mention was made of the temperature at all.

In our previous review, we called special attention to the fact that many authors had claimed to have made corrections in the volume profiles for compressibility effects. We do so again, as the phrases used in the literature do not always inspire confidence that

Table 2. Activation Volumes of Organic Reactions

No.	reaction	solvent	T/ °C	P/MPa		ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
	CMe	1						
	Me ₃ C							
1. CIDEP ^{a1} decay	y of Ö	i-PrOH-Et ₃ N	ambient	39.2	4	+26	453	<i>i</i> -PrOH 91 v%, b1
	Me ₃ C CMe ₃							
2. CIDEP ^{a1} decay	y of Q	<i>i</i> -PrOH-Et₃N	ambient	39.2	4	+30	453	<i>i-</i> PrOH 91 v%, b1
2. CIDEI decay	y OI	i-Hon-Ligh	amoient	39.2	7	T30	400	1-11011 91 170, 01
	CMe₃							
3. CIDEPal decay	Me ₃ C OH	PhH-Et ₃ N	ambient	39.2	4	+11	453	PhH 91 v%, b1
3. CIDEI ··· decay	y OI O.	Timi-Eigh	ambient	37.2	7	711	433	11111 91 470, 01
	Me ₃ C CMe ₃							
4. CIDEP ^{a1} decay	v of OH	PhH-Et ₃ N	ambient	39.2	4	+12	453	PhH 91 v%, b1
	çоон	3						
	O_2N NO_2							
5. CIDEPal decay	y of NO ₂	aq i-PrOH	ambient	39.2	4	+11 4	53, 454	<i>i-</i> PrOH 90 v%, c1
	Ме ≻снон							
6. CIDEP ^{a1} deca	ay of Me	i-BuOH	ambient	39.2	4	+9	453	d1
	Me							
7	Me N Me		25	64		. 12.7	455	
7. spin exchange8.9.	e or •	<i>n</i> -pentane <i>n</i> -hexane PhH	25 25 ambient	64 64 50	6 6 5	+12.7 12.1 +18.4	455 456 457	
10.		PhMe	23	59 59	7 7	+13.7	458 457	
11. 12.		$o ext{-Me}_2 ext{C}_6 ext{H}_4$ PhNO $_2$	ambient 20	44	4	+15.3 +13.3	458	
13.		acetone	25	64	6	+8.7	456	
14. 15.		acetone H_2O	30 15	59 59	7 5	+7.7 -7.6	458 458	
16.		MeOH	25	59	7	+6.7	458	
17. 18.		EtOH i-PrOH	ambient 25	59 59	7 7	+9.5 +15.4	457 458	
19.	^	i-BuOH	ambient	39	5	+19.6	457	
	Me N Me							
20. spin exchange	of	<i>n</i> -pentane	25	64	6	+9.2	455	
21.	. 01	<i>n</i> -hexane	25 25 25	64	6	+14.3	455	
22.	ОН	acetone	25	64	6	+10.7	456	
	Me N Me							
22: 1	0		25	64	,	. 10.0	455	
23. spin exchange 24.	; OI •	n-pentane n-hexane	25 25	64 64	6 6	+13.0 +13.3	455 455	
25.		acetone	25	64	6	+8.1	455	
26.		n-hexane-EtOH	25	64	6	+14.5	455	<i>n</i> -hexane 90 v%.

Table 2. (Continued)

No.	reaction	solvent	<i>T</i> / °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
	NH ₂							
	Me Me							
	Me´ N Me - O							
7. spin exchang 8.	e of •	<i>n</i> -pentane <i>n</i> -hexane	25 25	64 64	6 6	+9.9 +11.5	455 455	
9.		acetone	25	64	6	+12.6	455	
	соон							
	Me Me							
	Me N Me							
). spin exchang	e of •	acetone	25	64	6	+12.3	455	
	CONH₂							
	Me Me							
	Me N Me							
. spin exchang	e of •	acetone	25	64	6	+10.6	455	
	Me ₃ C _N _CMe ₃							
2. spin exchang	Me ₃ C _N ,CMe ₃	acetone	25	64	6	+7.4	456	
L. Spin Cachang		actione	43	U -1	U	т/. Ч	-JU	
	n-C ₅ H ₁ N Me							
3. spin exchange	e of •	acetone	25	64	6	+10.7	455	
	n-C ₉ H ₁₉ Me							
	n-C ₉ H ₁₉ N Me n-C ₉ H ₁₉ N Me							
4. spin exchange	U	acetone	25	64	6	+11.1	455	
5.		PhMe	25	64	6	+16.6	455	
6. auenching of	O ₂ by solvent	<i>n</i> -hexane	25	400	6	-9	459	e1
7.	2 7	cy-C ₆ H ₁₁ Me	25	400	6	-6	459	e1
8. 9.		MeCN MeOH	25 25	300 300	5 6	-6 -4	459 459	el el
Э.		PhH	25	110	13	-8.3	460	CI
1. 2.		PhMe m -Me $_2$ C $_6$ H $_4$	25 25	400 400	9 9	-10.0 -13.0	460 460	
3.		o-Me ₂ C ₆ H ₄	25	400	9	-14.2	460	
4.		p -Me $_2$ C $_6$ H $_4$	25	400	9	-19.2	460	
5.		$1,3,5-Me_3C_6H_3$	25	300	7	-20.7	460	
5. 7.		n-pentane cy -C ₆ H ₁₂	25 25	80	-	-11.9 -9.9	461 461	
3.		CH_2Cl_2	25	-	-	-8.7	461	
).		CHCl ₃	25 25	100	6	-8.0	461	
). .		acetone MeCN	25 9	120	5	-8.2 -6.5	461 461	
)		MeCN MeCN	20 24	-	-	-6.5 -7.9	461 461	
3. <u>1</u> .		MeCN	25	120	5	-7.0	461 461	
5. 5.		MeCN MeCN	30 34	-	-	-7.6 -8.7	461	
7. 3.		MeCN MeCN	35 40	-	-	-7.4 -7.5	461 461	
9.		MeCN	45 50	-	-	-9.0	461 461	
). .		MeCN MeCN	55	-	-	-8.8 -8.3	461	
2. 3.		MeCN MeCN	65 67	-	-	-9.4 -10.7	461 461	
1. 5.		PhMe	10	120	5	-8.6 -10.3	461 461	
5.		PhMe PhMe	25 40	120	-	-11.1	461	
7. 3.		PhMe PhCN	70 25	100	6	-14.4 -7.2	461 461	
θ.		CCl ₄	25	-	-	-10.6	461	
). 1		${ m C_6F_6}$ formamide	25 25	60	-	-9.9 -4.1	461 461	
1. 2.		CS ₂	25	-	-	-10.5	461	
	¹ O ₂ by DABCO ^{f1}	PhCN	25	100	4	-10.0	462	
 quenching of 4. 	O ₂ by Dribeo	MeCN	25	120	6	-10.8	462	

Table 2. (Continued)

No.	reaction	solvent	T/ °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
76. quenching	of ¹ O ₂ by DABCO ^{f1}	CH ₂ Cl ₂	25	120	5	-14.9	462	
77.		PhMe	25	120	6	-17.1	462	
78.		CHCl ₃	25	120	4	-19.0	462	
79. quenching	of ¹ O ₂ by piperazine	n-hexane	ambient	120	13	-42.0	463	
80.		PhMe	ambient	120	13	-27.4	463	
81. 82.		CH ₂ Cl ₂ PhCl	ambient ambient	120 120	13 13	-28.2 -24.3	463 463	
83.		o-Cl ₂ C ₆ H ₄	ambient	120	13	-22.6	463	
84.		PhCN	ambient	120	13	-18.8	463	
85. quenching	of ${}^{1}O_{2}$ by N,N' -dimethylpiperazine	<i>n</i> -hexane	ambient	120	13	-35.8	463	
86.		PhMe	ambient	120	13	-23.1	463	
87.		CH ₂ Cl ₂	ambient	120	13	-22.8	463 463	
88. 89.		PhCl o-Cl ₂ C ₆ H ₄	ambient ambient	120 120	13 13	-19.5 -16.8	463	
90.		PhCN	ambient	120	13	-15.8	463	
91 quenchina	of ${}^{1}O_{2}$ by N-methylpiperidine	n-hexane	ambient	120	13	-33.3	463	
92.	or of by it meanypiperiame	PhMe	ambient	120	13	-21.5	463	
93.		CH ₂ Cl ₂	ambient	120	13	-21.2	463	
94. 95.		PhCl	ambient ambient	120 120	13 13	-18.6 -16.6	463 463	
96.		o-Cl ₂ C ₆ H ₄ PhCN	ambient	120	13	-14.7	463	
	of ¹ O ₂ by quinuclidine	<i>n</i> -hexane PhMe	ambient ambient	120 120	13 13	-35.7 -22.1	463 463	
98. 99.		CH ₂ Cl ₂	ambient	120	13	-19.2	463	
100.		PhCl	ambient	120	13	-16.6	463	
101.		o-Cl ₂ C ₆ H ₄	ambient	120	13	-16.0	463	
102.	Clost N. N. N. N. N. N. N. A. C.	PhCN	ambient	120	13	-12.5	463	
	of ${}^{1}O_{2}$ by $N,N,N'N'$ -tetramethyl-1,4-phenylenedian		ambient	120 120	13 13	-34.2 -27.5	463 463	
104. 105.		<i>cy</i> -C ₆ H ₁₁ Me PhMe	ambient ambient	120	13	-27.3 -19.0	463	
106.		CH ₂ Cl ₂	ambient	120	13	-17.6	463	
107.		PhCl	ambient	120	13	-13.9	463	
108.		o-Cl ₂ C ₆ H ₄	ambient	120	13	-11.8	463	
109. 110.		MeCN PhCN	ambient ambient	120 120	13 13	-13.8 -9.0	463 463	
	of S. otata of authorizona has O	ou C. H. Mo	25	400	9	+12	464	
	of S_1 state of anthracene by O_2 of T_1 state of anthracene by O_2	cy-C ₆ H ₁₁ Me cy-C ₆ H ₁₁ Me	25 25	400	9	+6.1	464	
	of S_1 state of 9-methylanthracene by O_2	cy-C ₆ H ₁₁ Me	25	700	12	+14	464	
	of T_1 state of 9-methylanthracene by O_2	cy-C ₆ H ₁₁ Me	25	400	9	+5.8	464	
	of S_1 state of 9,10-dichloroanthracene by O_2	cy-C ₆ H ₁₁ Me	25	700	12	+6	464	
	of T_1 state of 9,10-dichloroanthracene by O_2	cy-C ₆ H ₁₁ Me	25	400	9	+5.1	464	
	of S_1 state of 9,10-dicyanoanthracene by O_2	cy-C ₆ H ₁₁ Me	25	700	12	-9g l	464	h1
	of T ₁ state of 9-acetylanthracene by O ₂	cy-C ₆ H ₁₁ Me	25	400	9	+5g1	464	
110 quenchina	of S_1 state of perylene by 1-bromonaphthalene (BN)	PhMe	25	150	7	-5.6	465	$[BN] = 1.68 \text{ mol dm}^{-3}$
120.	or of state or perytene by 1-brondonaphinatene (BIV)	PhMe	25	150	7	-5.0 -5.7	465	$[BN] = 1.44 \text{ mol dm}^{-3}$
120.		PhMe	25	150	7	-6.0	465	[BN] = 1.44 mol dm $[BN] = 1.20 \text{ mol dm}^{-3}$
122.		PhMe	25	150	7	-7.0	465	$[BN] = 0.96 \text{ mol dm}^{-3}$
123.		PhMe	25	150	7	-7.4	465	$[BN] = 0.72 \text{ mol dm}^{-3}$
124.		PhMe	25	150	7	-7.7	465	$[BN] = 0.48 \text{ mol dm}^{-3},$
125. quenching	of S_1 state of perylene by 1-iodonaphthalene (IN)	PhMe	ambient	150	7	-4.6	465	$[IN] = 0.15 \text{ mol dm}^{-3}$
126		CH M	25	300	7		466	31
126.		cy-C ₆ H ₁₁ Me	23	500	,	-	-100	j1
127. W	e Me	cy-C ₆ H ₁₁ Me	25	300	7	-	466	j1
128.	+ hv	<i>cy</i> -C ₆ H ₁₁ Me	25	300	7	+16 ⁱ¹	466	j1

Table 2. (Continued)

No. reaction	solvent	T/ °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
$ \begin{array}{c c} \hline \\ 129. \end{array} $ $ \begin{array}{c} Me \\ S_1 \end{array} $	$\int_{T_1}^{\bullet} cy \cdot C_6 H_{11} Me$	25	300	7	-	466	jl
$130.$ \checkmark \rbrace	MeCN	25	203	5	-3.2	467	
131. e + CO ₂ CO ₂	2,2,4-trimethylpentane	51	250	9	-64	468	$\Delta V^{\neq} = +110$ for the
132.	2,2,4-trimethylpentane	58	-	-	-67	468	reverse process. k1 $\Delta V^{\pm} = +164$ for the reverse process. k1
133.	2,2,4-trimethylpentane	67	-	-	-61	468	$\Delta V^{\neq} = +150$ for the reverse process. k1
134.	2,2,4-trimethylpentane	75	-	-	-49	468	$\Delta V^{\neq} = +120$ for the
135.	3-methylpentane	80	-	-	-44	468	reverse process. k1 $\Delta V^{\pm} = +246$ for the
136.	3-methylpentane	90	-	-	-45	468	reverse process. k1 $\Delta V^{\neq} = +220$ for the reverse process. k1
137.	3-methylpentane	100	250	12	-31	468	$\Delta V^{\neq} = +198$ for the
138.	Me ₄ Si	23	-	-	-68	468	reverse process. h1,k1 $\Delta V^{\neq} = +106$ for the reverse process. k1
139.	Me ₄ Si	34	-	-	-66	468	$\Delta V^{\neq} = +112$ for the reverse process. k1
140.	Me ₄ Si	40	-	-	-52	468	$\Delta V^{\neq} = +115$ for the reverse process. k1
141.	Me ₄ Si	48	-	-	-63	468	$\Delta V^{\neq} = +121$ for the
142.	Me ₄ Si	59	-	-	-54	468	reverse process. k1 $\Delta V^{\neq} = +105 \text{ for the}$
143.	Me ₄ Si	66	-	-	-63	468	reverse process. k1 $\Delta V^{\neq} = +83$ for the
144.	Me ₄ Si	81	-	-	-47	468	reverse process. k1 $\Delta V^{\neq} = +85$ for the
145.	2-methylbutane	47	150	7	-59	469	reverse process. $k1$ $\Delta V = -298$, $k1$, $k1$
146.	2-methylbutane	55	150	12	-66	469	$\Delta V = -251, h1, k1$
147.	2-methylbutane	70	150	13	-51	469	$\Delta V = -255, \text{h1}, \text{k1}$
148.	2-methylbutane	85	150	10	-51	469	$\Delta V = -246, \text{ k1}$
149.	2-methylbutane	100	150	12	-46	469	$\Delta V = -228, \text{ k1}$
150.	2,2-dimethylbutane	24	200	10	-96	469	$\Delta V = -231, \text{ k1}$
151.	2,2-dimethylbutane	32	-	-	-110	469	$\Delta V = -271, \text{ k1}$
152.	2,2-dimethylbutane	40	-	-	-81	469	$\Delta V = -248, \text{ k1}$
153.	2,2-dimethylbutane	44	200	10	-	469	$\Delta V = -254, \text{ k1}$
154.	2,2-dimethylbutane	60	-	-	-84	469	$\Delta V = -219, \text{ k1}$
155.	2,2-dimethylbutane	80	200	7	-83	469	$\Delta V = -193, \text{ k1}$
156. CH ₂ =CH-CH=CH ₂ ⁻ → CH ₂ =CH-CH=CH ₂ +	e 2,2-dimethylbutane	8	200	7	+112	470	$\Delta V = 122, k1, 11$
157.	2,2-dimethylbutane	42	300	8	+84	470	$\Delta V = 100, k1, l1$
158. o -Ps ^{ml} + PhNO ₂ \longrightarrow PhNO ₂ + 2 γ 159.	<i>n</i> -hexane PhH	19 19	98 49	11 6	-329 ⁿ¹ ≈0	471 471	
160. overall motion of 161.	neat neat	37 56	197	4 5	+37.9 +30.3	472 472	o1 o1
162. overall motion of	neat	37	-	4	+33.3	472	01

Table 2. (Continued)

No. reaction	solvent	T/ °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
Me Me							
163. overall motion of 164.	neat neat neat	17 37 56	- - -	4 5 6	+51.5 +43.3 +42.4	472 472 472	ol ol ol
Me Me							
166. overall motion of 167. 168. 169.	neat neat neat neat	27 37 46 56	- - -	- 9 - -	+74.8 +58.9 +57.1 +56.6	472 472 472 472	o1 o1 o1 o1
170. motion of the methyl groups in 171. 172.	neat neat neat	17 37 56	- - -	- - -	+1.7 +7.4 +5.4	472 472 472	ol ol ol
Me Me Me Me 173. motion of C-1 and the methyl group on C-2 in	neat	27	-	-	-53.9	472	o!
174. 175. 176.	neat neat neat	37 46 56	- - -	- -	-10.8 -12.2 -26.6	472 472 472	o1 o1 o1
Me							
177. motion of C-5 in 178 179. 180.	neat neat neat neat	27 37 46 56	- - -	- - -	-11.0 +9.7 +16.1 +21.6	472 472 472 472	ol ol ol ol
181. overall motion of (<i>n</i> -Oct) ₄ Sn	neat	17	211	7	+10.0	473	From the relaxation of
182.	neat	37	_	_	+23.9	473	C-1. o1 From the relaxation of
183.	neat	56	-	-	+29.0	473	C-1. o1 From the relaxation of
184.	neat	17	211	7	+19.8	473	C-1. ol From the relaxation of
185.	neat	37	-	-	+27.6	473	C-2. o1 From the relaxation of
186.	neat	56	-	-	+29.5	473	C-2. o1 From the relaxation of C-2. o1
187.	neat	17	211	7	+30.0	473	From the relaxation of
188.	neat	37	-	-	+33.5	473	C-3. o1 From the relaxation of
189.	neat	56	-	-	+29.5	473	C-3. o1 From the relaxation of C-3. o1
190.	neat	17	211	7	+31.0	473	From the relaxation of C-4,5. o1
191.	neat	37	-	-	+32.9	473	From the relaxation of C-4,5. o1
192.	neat	56	-	-	+29.7	473	From the relaxation of
193.	neat	17	211	7	+28.0	473	C-4,5. o1 From the relaxation of
194.	neat	37	-	-	+35.3	473	C-6. o1 From the relaxation of
195.	neat	56	-	-	+31.5	473	C-6. ol From the relaxation of
196.	neat	17	211	7	+33.8	473	C-6. o1 From the relaxation of
197.	neat	37	-	-	+36.7	473	C-7. ol From the relaxation of
198.	neat	56	-	-	+33.7	473	C-7. ol From the relaxation of
199.	neat	17	211	7	+30.5	473	C-7. o1 From the relaxation of
200.	neat	37	-	-	+30.8	473	C-8. o1 From the relaxation of
201.	neat	56	-	-	+32.1	473	C-8. o1 From the relaxation of C-8. o1

Table 2. (Continued)

No.	reaction	solvent	T/ °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
202. overall	motion of Ph ₂ CH ₂	neat	27	50	5	+19 ^p 1	474	q1
03.		neat	36	100	5	+16 ^{p1}	474	q1
04.		neat	53	100	5	+15 ^{p1}	474	q1
05.		neat	67	100	5	+15 ^{p1}	474	q1
06.		neat	80	100	5	+14p1	474	q1
07.		neat	96	100	5	+13 ^{p1}	474	q1
08. overall	motion of Ph ₂ O	neat	33	100	5	+22 ^{p1}	474	q1
09.	_	neat	53	100	5	+21p1	474	q1
0.		neat	66	100	5	+17 ^{p1}	474	q1
1.		neat	81	100	5	+16 ^p 1	474	q1
2. overall 1	motion of D ₂ O	neat	10	300	7	-4.8	475	rl
3.	-	neat	30	300	7	-3.8	475	rl
4.		neat	50	300	7	-2.2	475	r1
5.		MeCN	30	300	7	+4.9	476	rl
6.		CHCl ₃	30	300	7	+4.0	476	r1
7.		PhH	30	300	7	+0.6	476	r1
8. overall	motion of CD ₃ CN	neat	30	300	7	+9.0	475	r1
9. overall 1	motion of CDCl ₃	CHCl ₃	30	300	7	+8.2	475	rl CDCl ₃ 15 w%.
0. overall i	motion of C_6D_6	PhH	30	300	7	+10	475	r1 C ₆ D ₆ 3 w%.
	O_2N $N=N$ $N=N$							
21. reorient	ation of CH ₂	CH ₂ OH corona poled film of PMMA ^{s 1}	99	272	7	+96	477	
22.		corona poled film of PS ^{t1}	98	204	6	+211	477	
3.		corona poled film of PC ^{u1}	124	272	6	+192	477	
	O ₂ N-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				_			
24. reorient	ation of	corona poled film	99	272	6	+108	477	
25.		of PMMA ^{s 1} corona poled film of PS ^{t 1}	98	204	7	+228	477	
26.		corona poled film of PCul	124	204	5	+126	477	
	O_2N —NMe ₂							
7. reorient	ation of	corona poled film of PMMAs I	99	272	5	+30	477	
8.		corona poled film of PS ^{t 1}	98	204	5	+162	477	
9.		corona poled film of PCul	124	272	6	+102	477	
First step	o in the inclusion of	orre						
	>	to α-cyclodextrin 60 ₃ -						
30.	OOC Me	H ₂ O	15	200	5	-20.9	478	$\Delta V = -3.6$
Second s	step in the inclusion of HO N,	to α-cyclodextrin -SO ₃ -						
1. First step	o in the inclusion of	H ₂ O	15	200	5	-15.8	479	$\Delta V = +6.1$
		to α-cyclodextrin 603 ⁻						
2. First step	o in the inclusion of	H ₂ O	15	200	5	-22.1	479	$\Delta V = -6.2$
·	Et ₂ N—()— N, /—	to α-cyclodextrin iO3 ⁻						
33.		H ₂ O	15	200	5	-1.8	479	$\Delta V = +17.0$
	of the ethylene in $(C_5H_5)Rh(C_2H_4)_2^{v_1}$	C_6D_6	44.5	-	4 5	-2 -5	480	
		יאויז	44 >	_			480	
5.		CDCl ₃	44.5	-			480	
5.	of ethylene in $(C_5H_5)Rh(C_2H_4)(C_2F_4)^{w1}$	n -pentane- d_{12} n -pentane- d_{12}	-15	495	12	-3.7g1	481	$\Delta V^{\neq} > 0$ at $P > 300$

Table 2. (Continued)

o. reaction	solvent	<i>T/</i> °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
38.	cy-C ₆ D ₁₁ CD ₃	-15	493	12	-5.9 ^g 1	481	$\Delta V^{\neq} > 0$ at $P > 300$.
39.	cy-C ₆ D ₁₁ CD ₃	0	497	12	-3.3g1	480	$\Delta V^{\neq} > 0$ at $P > 300$.
40.	CS ₂	-15	497	12	-3.6g1	481	$\Delta V^{\neq} > 0$ at $P > 300$.
41.	CS ₂	0	496	12	-5.9g1	481	$\Delta V^{\neq} > 0$ at $P > 300$.
$42.$ \bowtie \bowtie	CS ₂	-10	470	5	-2.0	482	
_{43.} CCl₃CO€NMe₂ 44.	<i>n</i> -pentane <i>cy</i> -C ₆ H ₁₁ Me	9 9	416 400	12 9	+10.6 ⁱ¹ +10.3 ⁱ¹	483 483	
H- 45. rotation of the phenyl group in	(CH ₂) ₈ CH ₂ AcO OAC CDCl ₂ CDCl ₂	83	300		-5 ~ 10	484	
46.	CDCl₂CDCl₂ Intramolecular Excimer	105	300	8	-6 ~ 7	484	
47. \	2,6,10,14-tetramethlpentadecane	25	250	11	+24.8	485	
48. 49.	acetone	30 30	500 600	9 10	+28.0 +4.9	486 487	
50.	<i>n</i> -hexane	30	600	10	+5.9	487	
51.	cy-C ₆ H ₁₁ Me	30 30	600	10	+9.6 +6.7	487	
52. 53.	ethanol i-BuOH	30	600 600	10 10	+12.6	487 487	
54.	SDS ^{x1} micelles	30	250	6	+5.3	488	
55.	$n-C_{12}H_{25}(OC_2H_4)_5OH$ micelles	30	300	8	+14.2	488	
56.	$n-C_{12}H_{25}(OC_2H_4)_6OH$ micelles	30	300	8	+14.6	488	
57. \ 'S ₁ \ '	<i>n</i> -pentane	30	500	-	+1.4	489	
58. 59.	<i>n</i> -hexane <i>n</i> -octane	30 30	500 500	-	+2.7 +3.3	489 489	
60.	n-decane	30	500	-	+3.3	489	
0, S, O, NH ₂ S ₁	Twisted Intramolecular Charge- Transfer (TICT) state						
51. \ / 52.	MeOH EtOH	30 30	400 500	9 11	-	490 490	y1 y1
53.	n-PrOH	30	500	6	+2.4	490	yl yl
54. 55.	n-PrOH n-BuOH	30 30	500 500	6 10	+2.6	491 490	y1
56.	n-BuOH	30	500	11	-	491	·
57. 58.	n-PentOH n-PentOH	30 30	450 400	10 5	+2.9	490 491	yl
Me ₂ N————————————————————————————————————	Intramolecular Charge- Transfer (ICT) state						
59. \ <u></u>	n-PrOH	30	500	_	+7.9	492	
70.	n-PentOH	30	500	_	+1.3	492	

Table 2. (Continued)

No.	reaction	solvent	T/ °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
	Et N							
<		Ęt						
	Et	N N						
271.		Ö — MeOH	30	500	11	+3.5	493	
272. 273.		EtOH n-PrOH	30 30	500 500	11 11	+4.3 +3.8	493 493	
274.		n-BuOH	30	500	11	+3.9	493	
	H_C=N_							
	E-isomer							
275. ^N 276.	Me ₂ N NO ₂	<i>n-</i> hexane PhH	25 25	240 70	9 5 9	-1.2 -1.2	494 494	
277.		THF	25	240		-1.2	494	
278. 279.		PhCl o-C ₆ H ₄ Cl ₂	25 25	240 240	9 9	-0.8 -1.1	494 494	
280.		2,4-dicyclohexyl-2-methylpentane	-5	330	12	0.4	495	$\Delta V^{\neq} >> 0$ at high P .
281.		2,4-dicyclohexyl-2-methylpentane	0	360	13	+0.7	495	$\Delta V^{\neq} >> 0$ at high P .
282.		2,4-dicyclohexyl-2-methylpentane	5	360	13	+0.3	495	$\Delta V^{\neq} >> 0$ at high P .
283.		2,4-dicyclohexyl-2-methylpentane	10	390	14	+0.5 +0.1	495 495	$\Delta V^{\neq} >> 0$ at high P . $\Delta V^{\neq} >> 0$ at high P .
284. 285.		2,4-dicyclohexyl-2-methylpentane 2,4-dicyclohexyl-2-methylpentane	15 20	420 420	15 15	+0.1	495	$\Delta V^{\neq} >> 0$ at high P . $\Delta V^{\neq} >> 0$ at high P .
286.		glycerol triacetate	5	420	15	0.0	496	$\Delta V^{\neq} >> 0$ at high P .
287.		glycerol triacetate	10	450	16	+0.3	496	$\Delta V^{\neq} >> 0$ at high P .
288.		glycerol triacetate	15	480	17	+0.3	496	$\Delta V^{\neq} >> 0$ at high P .
289.		glycerol triacetate	20	510	18	+0.1	496	$\Delta V^{\neq} >> 0$ at high P .
290.		glycerol triacetate	25	540	19	0.0	496	$\Delta V^{\neq} >> 0$ at high P .
291.		2-methyl-2,4-pentanediol		420	15	+0.5	496	$\Delta V^{\neq} >> 0$ at high P .
292.		2-methyl-2,4-pentanediol		420	15	+0.6 0.0	496 496	$\Delta V^{\neq} >> 0$ at high P . $\Delta V^{\neq} >> 0$ at high P .
293. 294.		2-methyl-2,4-pentanediol 2-methyl-2,4-pentanediol	0 5	480 480	17 17	+0.3	496 496	$\Delta V^{\neq} >> 0$ at high P . $\Delta V^{\neq} >> 0$ at high P .
295.	н	2-methyl-2,4-pentanediol		360	13	+0.2	496	$\Delta V^{\neq} >> 0$ at high P .
	C=N							
	E-isomer							
296. ^N	Me₂Ñ COOEt	2,4-dicyclohexyl-2-methylpentane		300	11	+0.4	495	$\Delta V^{\neq} >> 0$ at high P .
297.		2,4-dicyclohexyl-2-methylpentane		360 390	13	+1.7 +1.5	495 495	$\Delta V^{\neq} >> 0$ at high P . $\Delta V^{\neq} >> 0$ at high P .
298. 299.		2,4-dicyclohexyl-2-methylpentane 2,4-dicyclohexyl-2-methylpentane	10 15	390	14 14	+1.0	495	$\Delta V^{\neq} >> 0$ at high P .
300.		2,4-dicyclohexyl-2-methylpentane		420	15	+1.3	495	$\Delta V^{\neq} >> 0$ at high P .
301.		glycerol triacetate		450	16	+0.5	496	$\Delta V^{\neq} >> 0$ at high P .
302.		glycerol triacetate	10	480	17	+1.0	496	$\Delta V^{\neq} >> 0$ at high P .
303.		glycerol triacetate	15	450	17	+1.2	496	$\Delta V^{\neq} >> 0$ at high P .
304.		glycerol triacetate		570	20	+1.0	496	$\Delta V^{\neq} >> 0$ at high P .
305.		glycerol triacetate		570 450	20 16	+1.2 +1.7	496 497	$\Delta V^{\neq} >> 0$ at high P . $\Delta V^{\neq} >> 0$ at high P .
306. 307.		2-methyl-2,4-pentanediol 2-methyl-2,4-pentanediol		510	18	+1.7	497	$\Delta V^{\neq} >> 0$ at high P .
308.		2-methyl-2,4-pentanediol		510	18	+1.6	497	$\Delta V^{\neq} >> 0$ at high P .
309.		2-methyl-2,4-pentanediol		540	19	+1.8	497	$\Delta V^{\neq} >> 0$ at high P .
310.	н	2-methyl-2,4-pentanediol	15	540	19	+1.6	497	$\Delta V^{\neq} >> 0$ at high P .
	C=N E-isomer							
311. ^N	Me ₂ N Br	2,4-dicyclohexyl-2-methylpentane	0	450	16	+1.9	495	$\Delta V^{\neq} >> 0$ at high P .
311.	<u>-</u>	2,4-dicyclohexyl-2-methylpentane		450	16	+2.2	495	$\Delta V^{\neq} >> 0$ at high P .
312.		2,4-dicyclohexyl-2-methylpentane	10	510	18	+2.2	495	$\Delta V^{\neq} >> 0$ at high P .
314.		2,4-dicyclohexyl-2-methylpentane	15	510	18	+2.1	495	$\Delta V^{\neq} >> 0$ at high P .

Table 2. (Continued)

	solvent	T/ °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
15.	2,4-dicyclohexyl-2-methylpentane	20	510	18	+1.3	495	$\Delta V^{\neq} >> 0$ at high P .
16.	glycerol triacetate	5	570	20	+2.1	496	$\Delta V^{\neq} >> 0$ at high P .
17.	glycerol triacetate	10	600	21	+1.9	496	$\Delta V^{\neq} >> 0$ at high P .
18.	glycerol triacetate	15	600	21	+2.4	496	$\Delta V^{\neq} >> 0$ at high P .
19.	glycerol triacetate	20	600	21	+1.8	496	$\Delta V^{\neq} >> 0$ at high P .
20.	glycerol triacetate	25	600	21	+2.6	496	$\Delta V^{\neq} >> 0$ at high P .
21.	2-methyl-2,4-pentanediol	-5	600	21	+2.5	497	$\Delta V^{\neq} >> 0$ at high P .
22.	2-methyl-2,4-pentanediol	0	600	21	+2.3	497	$\Delta V^{\neq} >> 0$ at high P .
23.	2-methyl-2,4-pentanediol	5	600	21	+2.5	497	$\Delta V^{\neq} >> 0$ at high P .
24.	2-methyl-2,4-pentanediol	10	600	21	+2.6	497	$\Delta V^{\neq} >> 0$ at high P .
H C=N	→ E-isomer						C
o 5 Me ₂ N NMe ₂		20				10.6	
_{25.} Me ₂ N NMe ₂ 26.	glycerol triacetate glycerol triacetate	20 25	600 600	21 21	+1.5 +1.0	496 496	
27.	glycerol triacetate	30	600	21	+2.1	496	
28.	glycerol triacetate	35	600	21 21	+2.1	496	
29.	glycerol triacetate E-isomer	40	600	21	+2.4	496	
30.02N NMe2	<i>n</i> -hexane	25 25	240	9	+0.3	494	
31. 32.	PhH acetone	25 25	80 240	9 5 9	+1.5 +1.2	494 494	
i3.	MeOH	25 25	240	9	+3.1	494	
34. 2,4,6-(NO ₂) ₃ NMe ₂	F ₃ C OMe	25	240	5	-1.7	498	
5. degenerate isomerization of	FF3C CD3CN	25	207	8	+3.7	499	
i6. degenerate isomerization ol NMe₂	F_3C NMe ₂ CD ₃ CN	54	193	7	+0.5	499	
PH O Z-i 37. O NEt ₂ Net ₃ Net ₄ Net ₅ Net ₆ Net ₇ Net ₇ Net ₇ Net ₈ N	somer n-hexane PhH acetone MeOH	25 25 25 25 25	240 60 240 240	9 4 9 9	+2.3 +4.2 +3.7 +3.6	494 494 494 494	
Me N	Z-isomer n-hexane PhH acetone MeOH	25 25 25 25 25	240 60 240 240	9 4 9 9	+3.0 +4.2 +3.7 +3.6	494 494 494 494	
Me N	<i>Z-</i> isomer					494	

Table 2. (Continued)

No.	reaction	solvent	T/ °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
	NO ₂							
N	Me 🔷							
PK _N ≺	\longrightarrow Z-isomer							
347. C 348.		PhH MeOH	25 25	70 240	5 9	+5.0 -1.0	494 494	
/=	N=N							
<u> </u>	E-isomer							
349. Me ₂ N	NO ₂	glycerol triacetate	5	600	13	-15.5	496	$\Delta V^{\neq} >> 0$ at high P .
350.		glycerol triacetate	15	600	13	-15.9	496	$\Delta V^{\neq} >> 0$ at high P .
351. 352.		glycerol triacetate	25 40	800	17 17	-18.7 -20.4	496 496	$\Delta V^{\neq} >> 0$ at high P . $\Delta V^{\neq} >> 0$ at high P .
352. 353.		glycerol triacetate 2-methyl-2,4-pentanediol	-5	800 600	27	-20.4 -17.4	496 497	$\Delta V^{\neq} >> 0$ at high P . $\Delta V^{\neq} >> 0$ at high P .
353. 354.		2-methyl-2,4-pentanediol	5	600	28	-17.4	497	$\Delta V^{\neq} >> 0$ at high P .
355.		2-methyl-2,4-pentanediol	15	600	28	-18.6	497	$\Delta V^{\neq} >> 0$ at high P .
356.		2-methyl-2,4-pentanediol	25	600	29	-22.8	497	$\Delta V^{\neq} >> 0$ at high P .
357.		2-methyl-2,4-pentanediol	35	600	29	-21.6	497	$\Delta V^{\neq} >> 0$ at high P .
<i>(</i> =	N=N OMe							
<u> </u>	E-isomer							
358. Me ₂ N	NO ₂	glycerol triacetate	5	600	13	-20.0	496	$\Delta V^{\neq} >> 0$ at high P .
359.		glycerol triacetate	15	600	13	-24.1	496	$\Delta V^{\neq} >> 0$ at high P .
360.		glycerol triacetate	25	600	13	-21.1	496	$\Delta V^{\neq} >> 0$ at high P .
361.		glycerol triacetate	35	600	13	-23.0	496	$\Delta V^{\neq} >> 0$ at high P .
362.		2-methyl-2,4-pentanediol	-5	600	27	-18.7	497	$\Delta V^{\neq} >> 0$ at high P .
363.		2-methyl-2,4-pentanediol	0	600	27	-17.1	497	$\Delta V^{\neq} >> 0$ at high P .
364.		2-methyl-2,4-pentanedial	5	600	28 28	-20.0 -22.3	497 497	$\Delta V^{\neq} >> 0$ at high P .
365. 366.		2-methyl-2,4-pentanediol 2-methyl-2,4-pentanediol	15 25	600 600	28 29	-22.3	497 497	$\Delta V^{\neq} >> 0$ at high P . $\Delta V^{\neq} >> 0$ at high P .
367.		2-methyl-2,4-pentanediol	35	600	29	-22.8	497	$\Delta V^{\neq} >> 0$ at high P .
	N= N E-isomer							
368. Me ₂ N	NO_2	glycerol triacetate	-10	390	18	-16	500	$\Delta V^{\neq} >> 0$ at high P .
369.		glycerol triacetate	-5	390	18	-13	500	$\Delta V^{\neq} >> 0$ at high P .
370.		glycerol triacetate	0	390	20	-21	500	$\Delta V^{\neq} >> 0$ at high P .
371.		glycerol triacetate	5	420	18	-19	500	$\Delta V^{\neq} >> 0$ at high P .
	N=N E-isomer							
372. 373. Me N=	-N Me	n-hexane EtOH	21 36	199 204	6 6	+7 +5	501 501	
374.	E-isomer	EtOH	9	195	10	+10	501	
	N=N E-isomer		26	202	~	. 0	501	
375. 376.	u NA	n-hexane EtOH	36 46	203 214	7 7	+9 +7	501 501	
	N=N E-isomer							
377. Et	El	<i>n</i> -hexane	36	217	7	+6	501	

Table 2. (Continued)

10.	reaction	solvent	<i>T/</i> °C	P/MPa	no of	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
	<u></u>				- K data	7cm mor		
		ner						
_{78.} -0	, ∕=N [∔] We		15	180	7	+16.5	502	
'8. ° '9.	IVIE	H_2O H_2O	25	210	7 8	+10.3	502	
30.		H ₂ O	35	210	8	+18.1	502	
31.		H_2^2O	45	210	8	+20.0	502	
32.		aq MeOH	25	210	8	+19.1	502	MeOH 20 v%.
33.	O)+ OU - DI ÔOU	aq MeOH	25	210	8	+22.2	502	MeOH 40 v%.
(Pn ₂ 0 34.	$O)_{T_1}^* + SH \longrightarrow Ph_2COH$	i-PrOH	25	400	9	-11.3	503	
85.		i-BuOH	25	400	9	-11.0	503	1. 1
86. 87.		2-octanol 5-methyl-3-heptanol	25 16	400 400	14 9	-7.8 -	503 503	h1 h1
88.		5-methyl-3-heptanol	25	400	9	-10.1	503	h1
89.		5-methyl-3-heptanol	40	400	9	-	503	h1
_ /=	=\ hv	/=\OH						
_,o=<	$=$ 0 $\xrightarrow{\text{H}_2\text{O}}$ HO $=$	SDS ^{x1} micelles	35	150	4	-4.7	504	
91.		CTAB ^{z1} micelles	35	100	4	-22	504	
92.		AOT ^{a2} /H ₂ O/hexane reversed micelles	35	150	4	+1.5	504	$[H_2O]/[AOT] = 2$
93.		AOT ^{a2} /H ₂ O/hexane reversed micelles	35	150	4	+1.7	504	$[H_2O]/[AOT] = 5$
94.		AOT ^{a2} /H ₂ O/hexane reversed micelles	35	150	4	+2.4	504	$[H_2O]/[AOT] = 20$
95.		AOT ^{a2} /H ₂ O/hexane reversed micelles	35	100	4	+3.8	504	$[H_2O]/[AOT] = 30$
96.		H ₂ O	35	150	4	-3.0	504	
97.		<i>n</i> -heptane	35	100	4	-3.3	504	
98. 99. 90.	$D \longrightarrow D \longrightarrow D_4$	acridine-doped fluorene crystal acridine-doped fluorene crystal acridine-doped fluorene crystal	27 -196 -272	600 2000 3000	14	+9.3 +1.6 +0.03	505 505 505	
D ₄ 01. 02.	$D_{A} + D_{A}$	acridine-doped fluorene crystal acridine-doped fluorene crystal	27 -196	750 3600	15 6	+9.7 ≈0	506 506	
Ph−C 03.	-F + Me Me Me Me	Me $cy ext{-} ext{C}_6 ext{H}_{11} ext{Me}$	ambient	203	5	-17	507	
Ph-C- 04.	F + Me Me Ph F	—Ме $\it cy$ -С $_6$ Н $_{11}$ Ме	ambient	203	5	-18	507	
Ph−C- 05.	Me Me Me Me N	Me $cy ext{-}C_6 ext{H}_{11} ext{Me}$ MeCN	ambient ambient	203 203	5 5	-14 -14	507 507	
06.								
06.	Ph CI	Ma						
06.	Ph Cl	—Me						
06.	-CI + Me Me	—Ме $\it cy$ -С $_6$ Н $_{11}$ Ме	ambient	203	5	-15	507	

Table 2. (Continued)

No.	reaction	solvent	T/°C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
	Ph Br Me Me Me Me							
Ph-C- 409.	Me Me Me Me Me	cy-C ₆ H ₁₁ Me	ambient	203	5	-10	507	
Ph-C-	Br + Me Ph Br Me				_			
410.	Me O	cy-C ₆ H ₁₁ Me	ambient	203	5	-12	507	
) + O - O							
411.	")	AcOEt	107	130	13	-54	508	
	7 + 0							
412.		AcOEt	113	100	9	-45	508	$\Delta V (25 ^{\circ}\text{C}) = -29.5$
Ме	+ =-COOMe							
413.		CH ₂ Cl ₂	82	100	11	-43.0	508	$\Delta V (25 ^{\circ}\text{C}) = -39.5$
414.	+ MeOOC——COOMe — Me	COOMe CH ₂ Cl ₂	44	100	11	-45.8	508	$\Delta V (25 ^{\circ}\text{C}) = -39.3$
Me	+ MeOOC———COOMe ———————————————————————————————————	COOMe						
415.Me	Me	COOMe n-BuCl	58	80	9	-39.1	508	$\Delta V (25 ^{\circ}\text{C}) = -38.8$
416.	+ = COOMe - COOMe	CHCl ₃	90	100	13	-43.5	508	$\Delta V (25 ^{\circ}\text{C}) = -38.8$
417.		COOMe CHCl ₃	40.5	100	11	-37.3	508	$\Delta V (25 ^{\circ}\text{C}) = -39.4$
Me	Me N-Ph N-Ph							
418.		Et ₂ O	30	90	7	-36.1	509	
419. 420.		Et ₂ O Et ₂ O	30 30	80 80	5 6	-41.7 -45.4	509 509	$[AlCl_3] = 0.06 \text{ mol dm}^{-3}$ $[LiClO_4] = 2.25 \text{ mol dm}^{-3}$
	CH ₂ OH							
421.		H_2O	45	90	6	-36.0	509	
422. 423.		<i>n</i> -BuOH <i>n</i> -heptane	45 45	90 90	7 6	-31.4 -28.6	509 509	
	+ H ₂ C=CHCOOMe							
424.	Соом		20	1400	16	-18.8	510	$\Delta V = -30$ furan/methyl acrylate = 2
EtOOC-	HN H ₂ C=CHCN HN	/						
425. EtC 426.	EtOOC EtC	CH_2Cl_2 CH_2Cl_2	20 30	1000 1000	11 14	-21.3 -22.9	511 511	$\Delta V = -30.0$
427.		26 CH ₂ Cl ₂	40	1000	14	-19.2	511	
428.		CH_2Cl_2	50	1000	14	-20.9	511	

Table 2. (Continued)

No.	reaction	solvent	<i>T</i> / °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
429.		CH ₂ Cl ₂	60	1000	14	-27.4	511	
Me	NHAC MEOOC NHAC MEOOC	NHAC						
30.	O + OEt O OEt	O J., OEt CH2Cl2	60	300	10	-25.1	512	<i>P</i> ≥ 40
31. 32.		isodurene	75	300	12	-46.1 -25.0	513 512	$P \ge 5$
· •	ŅHAc		, .					
Ме 33.	NHAC HELO "OI	Et $\mathrm{CH_2Cl_2}$	100	280	9	-45.8	513	<i>P</i> ≥ 50
Ме 34.	NHAC HET O OET	CH₂Cl₂	100	280	9	-40.6	513	<i>P</i> ≥ 50
Ме 35.	POOC NHAC HEOOC HOLD NHAC HE POOC NHAC HE POOC NO NHAC HE POOC NHAC HE POOC NO NHAC HE POOC NO NHAC HE POOC NHAC HE POO	Et $\mathrm{CH_2Cl_2}$	100	280	9	-46.7	513	<i>P</i> ≥ 50
Ме 36.	NHAC NHAC NHAC OEt Proof	CH ₂ Cl ₂	100	280	9	-41.4	513	<i>P</i> ≥ 50
37. ^{Cl} 3	OFT	CH₂Cl₂	90	285	17	-40.3	514, 515	<i>P</i> ≥ 40
38. ^{Cl₃}	OEt Cl ₃ C O "OEt	CH ₂ Cl ₂	90	285	17	-31.1	514, 515	<i>P</i> ≥ 40
39.		<i>n</i> -heptane-isodurene	110	300	16	-28.0 ^{b2}	515	<i>P</i> ≥ 25
	O N O N O OEt							
40. ^F 3 ⁶	NO HOEL	CH₂Cl₂	45	310	18	-37.5	514, 515	<i>P</i> ≥ 20
41. ^{F3(}	F ₃ C O O O O O O O O O O O O O O O O O O O	CH ₂ Cl ₂	45	310	18	-31.5	514, 515	<i>P</i> ≥ 20
42. Me	ODET MEOOC O OET MEO	OC O "OEt CH ₂ Cl ₂	70	310	17	-32.5	515	$\delta\Delta V^{\neq} (= V_{\text{cis}}^{\neq} - V_{\text{trans}}^{\neq}$ $= -2.4, P \ge 30$

Table 2. (Continued)

No.	reaction	solvent	T/ °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
	ON OEt							
Menth	1yl(+)-OOC O	o						
443. Menthyl	-(+)-OOC O OEt Menthyl-(+)-OOC O	OEt CH ₂ Cl ₂	-	-	-	-20 ^{c2}	515	
﴾ الح الحديد	O- <i>i</i> -Bu Cl ₃ C O O- <i>i</i> -BuCl ₃ C O) 						
444.Cl3C		CH_2Cl_2	90	300	13	-35.0	516	$\delta\Delta V^{\neq} (= V^{\neq}_{cis} - V^{\neq}_{trans})$ = -8.9, $P \ge 35$
0 445.Cl ₃ C	O-t-BuCl3C	O CH ₂ Cl ₂	90	300	12	-29.6	516	$\delta \Delta V^{\neq} (=V_{\mathrm{cis}}^{\neq} - V_{\mathrm{trans}}^{\neq})$
⟨)	, ,					$= -9.0, P \ge 20$
0 446.Cl ₃ C	O-i-Pr Cl ₃ C	O-i-Pr CH ₂ Cl ₂	90	-	-	-32.3	516	$\delta \Delta V^{\neq} (=V^{\neq}_{cis} - V^{\neq}_{trans})$ = -8.7
	O-p-MeOC ₆ H ₄							= -0./
Cl ₃ C								
447.	Cl ₃ C O-p-MeOC ₆ H ₄ Cl ₃ C O '''O-p	p-MeOC ₆ H ₄ CH ₂ Cl ₂	120	280	13	-24.4	516	$\delta \Delta V^{\neq} (= V^{\neq}_{\text{cis}} - V^{\neq}_{\text{trans}})$ $= -10.9, P \ge 60$
	Me OMe							
448. F ₃ C	F ₃ C O Me Me	CH ₂ Cl ₂	50	300	11	-37.6	514	<i>P</i> ≥ 50
	N O N O							
449.F ₃ C	O F ₃ C O Me	CH ₂ Cl ₂	50	300	11	-41.7	514	<i>P</i> ≥ 50

Table 2. (Continued)

No.	reaction	galvant	T/ °C	P/MPa	no of	ΔV_0^{\neq}	ref	remarks
NO.	reaction	solvent	1/ 'C	r/Mra	k data	$/\text{cm}^3\text{mol}^{-1}$	161	Temarks
	< ><							
0/								
	Me OMe OMe							
450. Cl ₃ C	O Cl ₃ C O Me	CH_2Cl_2	80	300	10	-43.2	514	$P \ge 50$
<								
o	N O N O							
ſ	Me OMeOMe							
451.Cl ₃ C	Cl ₃ C O Me	CH ₂ Cl ₂	80	300	10	-42.6	514	$P \ge 50$
//								
<u>}</u>								
0								
	+ ()							
452. F ₃ C	0 F ₃ C O H	CH_2Cl_2	60	260	8	-41.7	514	$P \ge 50$
//								
\ <u>`</u>	_							
0/								
	+ 0							
453. ^{F₃C}	O F ₃ C O H O	CH_2Cl_2	60	260	8	-37.8	514	$P \ge 50$
9^{	Me — OH Me							
	H N							
454.	Me Me	CH ₂ Cl ₂	110	280	8	-33.7	517	$\Delta V(20 {}^{\circ}\text{C}) = -30$
455.		n-BuCl	110	250	6	-30.1	517	$P \ge 75$ $P \ge 50$
456.		THF	110	300	6	-34.8	517	$\Delta V(20 {}^{\circ}\text{C}) = -35$
457.		MeCN	110	300	6	-17.3	517	$P \ge 75$ $\Delta V(20 ^{\circ}\text{C}) = -15$
458.		PhMe	110	300	4	-13.4	517	$P \ge 75$ $\Delta V(20 ^{\circ}\text{C}) = -18$
430.	_	Tinvic	110	500	,	13.1	317	$P \ge 100$
آ_ اِ	Me N Me							
0	The Him has							
459.	Me H Me	CH ₂ Cl ₂	110	280	8	-32.1	517	$P \ge 75$ $P \ge 50$
460. 461.		n-BuCl THF	110 110	250 300	6	-28.0 -32.7	517 517	<i>P</i> ≥ 75
462. 463.		MeCN PhMe	110 110	300 300	6 4	-15.2 -12.1	517 517	$P \ge 75$ $\Delta V(20 ^{\circ}\text{C}) = -20$
				-	•	-	•	$P \ge 100$
	Me							
0	Ph O							
	$\bigcap_{N} \longrightarrow \bigoplus_{H''} \bigcap_{N} N$							
464.	0 Me O O	CH ₂ Cl ₂	70	300	8	-19.4	518	$P \ge 40$
465.		CH_2Cl_2	70	300	8	-17.9	518	<i>P</i> ≥ 40

Table 2. (Continued)

No.	reaction		solvent	<i>T/</i> °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
	VC O	-CN							
466.	CN C	CN CN	acetone-d ₆	70	680	4	-10 ^{g1}	519	<i>P</i> ≥ 25
(+	N-Ph -	N-Ph +							
467.		N-Ph ON Ph	acetone-d ₆	70	698	3	-11 ^{g1}	519	
, , , , , , , , , , , , , , , , , , ,	H.		accione a ₆	, ,	0,0	2		017	
468.	H		n-hexane	153	460	8	-24.8	520	
	H //H								
469.	"	0	n-hexane	153	460	8	-24.8	520	
EtOOC—	+ CH ₂ =CHCN -	EtOOC OEt							
470.	COOEt	EtOOC	CH ₂ CHCN	20	1200	14	-20.1	521	$\Delta V = -24.2$
471.			CH ₂ Cl ₂	20	1200	10	-21.3	521	$\Delta V = -29.0$
472. 473.	Me		PhCN PhH	20 20	1200 1200	11 14	-16.8 -20.5	521 521	$\Delta V = -23.8$
+ Me M	N Me N Me	.l. 'N /	Me Me Me						
474. Me	, N	FLOOGUE NOEt	PhMe CN	130	1000	10	-41	522	$\Delta V (20 ^{\circ}\text{C}) = -28.8$
475. EtO-	COOEt + CH ₂ =CH	EtOOC	MeCN	20	1200	12	-22	523	$-\Delta V^{\neq}$ increases with <i>P</i> . ΔV (30 °C) = -26
476.	0		CH ₂ Cl ₂	20	1200	7	-22	523	$-\Delta V^{\neq}$ increases with <i>P</i> . $\Delta V (30 ^{\circ}\text{C}) = -30$
+	exo- and end	10-							
477.	8) A	acetone-d ₆	20	686	9	-30.5	524	$\Delta V = -28.0$
√ <u>0</u> Me	+ CH ₂ =CHCN	Z _{CN}	F: 0	25			20.0	505	
478. 479.	CU CUAS Me		Et ₂ O Et ₂ O	25 25	-	-	-28.8 -29.3	525 525	In the presence of LiClO ₄ . d2
480. 481.	CH ₂ =CHAc →	Ac OEt	MeCN MeCN	34 34	-	- -	-38.0 -33.2	525 525	In the presence of ZnCl ₂ .
CH ₂ =CHC	HO + CH ₂ =CHOEt ── (CUCI	25			20.6	525	
482. 483.			CHCl ₃ CHCl ₃	25 25	-	-	-29.6 -31.7	525	In the presence of Yb(fod) ₃ .

Table 2. (Continued)

No.	reaction	solvent	<i>T</i> / °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
ОНС	+ CH ₂ =CHOEt							
Me	e Y Me	CHCl ₃	25		_	-27.7	525	
84. 85.	IVIC	CHCl ₃	25 25	_	-	-31.9	525	In the presence of
		circi	23				020	Yb(fod) ₃ . e2
2	-	n-decane	120	530	14	-38.4	526	$\Delta V(23 ^{\circ}\text{C}) = -33.5$
2	→ []							<i>P</i> ≥ 60
37.		n-decane	120	530	14	-20.9	526	$\Delta V(23 ^{\circ}\text{C}) = -24.4$ $P \ge 60$
2 —	— ()	n-decane	120	530	14	-34.0	526	$\Delta V(23 ^{\circ}\text{C}) = -43.5$ $P \ge 60$
2 Me Me Me	Me M							
39.	Me Me	PhMe	79	930	8	-15.8	527	f2, $P \ge 55$, $\Delta V(21 ^{\circ}\text{C}) = -40.8$
00.	Me Me Me Me	PhMe	79	930	8	-15.9	527	$g2, P \ge 55$
2 Me Me Me	Me Me Me Me Me Me							
91. 92.	Me Me	PhMe PhMe	79 79	930 930	8	-15.5 -15.5	527 527	$f2, P \ge 55$ $g2, P \ge 55$
93.Me	+ SO ₂ Me SO ₀	neat	39	100	6	-35.0	528	$\Delta V = -33$
Me+	PPhBr ₂ Me Br Br Br							
94. ^{Me}	Me´	Et ₂ O	-	380	-	-60	529	$\Delta V = -38$
MeCN + Ph	nCH ₂ N ₃ → N, N, N Me CH ₂ Ph	none	130	150	5	-18.3	530	h2, i2
96.	•	none	139	200	6	-20.5	530	h2
97. 98.	N	none none	149 158	170 210	4 5	-20.5 -21.3 -24.4	530 530	h2 h2
O₂N-√	OCN + PhCH ₂ N ₃ \longrightarrow N_2 N N_3 \longrightarrow N_4 N N_4	MeCN	80		_	-145	531	i2 k2
99. 00. 01. 02.	2 0 7	MeCN MeCN MeCN CH ₂ Cl ₂	80 80 80	1400	- - 5	-14.5 -18.2 -23.4 -18.4	531 531 531 531	j2, k2 j2, l2 j2, m2 n2
-	$O_2 \xrightarrow{hv} \bigcirc O$						 -	
03. F	sensitizer	cy-C ₆ H ₁₁ Me	25	400	9	-	532	
04. F	O + O ₂ hv singlet sensitizer Ph	<i>cy</i> -C ₆ H ₁₁ Me	25	400	6	-19	532	h1
		y -0 -11						

Table 2. (Continued)

No.	(Continued) reaction	solvent	T/ °C	P/MPa		ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
505. 506. 507. 508.		n-hexane 2,2,4,4,6,8,8-Me ₆ -nonane MeCN MeOH	25 25 25 25 25	400 200 300 300	6 8 5 5	-14 -6 -15 -20	532 532 532 532	h1
Me Me 509. Me 510. 511. 512. 513.	$ \frac{Me}{Me} + O_2 \frac{hv}{\text{singlet}} \frac{Me}{Me} CH_2OOF $	n-hexane PhMe CH ₂ Cl ₂ PhCl o -C ₆ H ₄ Cl ₂	25 25 25 25 25 25	120 120 120 120 120	5 5 5 5 5	-35.1 -26.4 -25.8 -24.0 -21.9	533 533 533 533 533	
514.	, + _{NC} =CN		25	120	5	-20.7	533	
515.	+ =-COOMe AICI3	COOMe PhH	25 25	203	5 7	+1.0	467 534	$\Delta V(25 {}^{\circ}\text{C}) = -28$
517. H	$\rightarrow 2$	<i>n</i> -heptane	160	300	8	+5.0	535	$\Delta V(20 \text{ °C}) = +26.4$ $P \ge 20$
MeCON 518.	Me + O OCOEt O	COOEt acetone	97	142	5	-45.1	536	$\Delta V(20 ^{\circ}\text{C}) = -33.9$
Me	+ O COOEt Me Me EIOOC COOEt HO COOEt	CH ₂ Cl ₂	52	90.5	6	-34.5	536, 537	$\Delta V(25 ^{\circ}\text{C}) = -29.4$
520.	+ O COOEt HO	CH_2Cl_2 $COOMe$ Ma	100	106	6	-33	537	<i>P</i> ≥ 530
Me————————————————————————————————————	## # MeOOCCOOMe	CH ₂ Cl ₂	96	93	7	-55.8	536, 537	$\Delta V(25 ^{\circ}\text{C}) = -35.4$
Me————————————————————————————————————	LETOOC Me COOEt	CH ₂ Cl ₂ COOEt N-N-COOEt	23	-	-	-22(25 °C)	537	$\Delta V(25 ^{\circ}\text{C}) = -35.4$
523.	+ EtOOC N=N COOEt	PhMe	50	100	12	-27.0(25°C)	537	$\Delta V(25 {}^{\circ}\text{C}) = -35.8$
524.	+ N=N COOEI	PhMe	23	-	-	-22(25 °C)	537	$\Delta V(25 {}^{\circ}{\rm C}) = -32.0$
525. Ph	Ph Ph	<i>n</i> -hexane	128	585	9	-13.3	520	

Table 2. (Continued)

No.	reaction	solvent	<i>T</i> / °C	P/MPa		ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
Ph	Ph Ph							
526. Ph	, 	<i>n</i> -hexane	128	585	9	-8.8	520	
527.	\rightarrow \bigcirc	PhMe	101	600	9	-9.8	520	
J27. H ←		Tillvic	101	000		-7.0	320	
528. H		<i>n</i> -heptane	70	300	8	-14.1	535	$\Delta V(20 ^{\circ}\text{C}) = -12.8$ $P \ge 20$
529. H	\rightarrow	<i>n</i> -heptane	160	300	8	+4.1	535	$\Delta V(20 {}^{\circ}\text{C}) = -17.4$ $P \ge 20$
530. H	$\rightarrow \bigcirc$	<i>n</i> -heptane	160	300	8	+4.2	535	$\Delta V(20 ^{\circ}\text{C}) = -9.6$ $P \ge 20$
531. Ph	Ph Ph	C_6D_6	162	600	9	-9.1	535	
532. 533.	O CH ₂ Ph O CH ₂ Ph	<i>i-</i> PrPh <i>n-</i> HexOH	130 130	160 160	5 5	-11.1 -10.1	538 538	
534.	ОН	PhBr	120	160	5	-10.6	538	
535.	Me Me Me	PhBr	120	160	5	-18.2	538	
536. HO) + () - () + () OH	none	400	55.2	2	-55	539	02
537.	HOOH OH	H ₂ O	25	90	6	-20	540	unbuffered.
538.		H ₂ O	25	100	5	-15	540	pH 2.00.
539.		H ₂ O	25 25	100	4	-16	540 540	pH 2.65.
540. 541.		Н ₂ О Н ₂ О	25 25	90 70	6 4	-13 -4	540 540	pH 3.00. pH 4.87.
HO HO HO OH	CI CN CN CI HO OH	OH CN CN OH H ₂ O	25	90	6	-16	540	Unbuffered.
HO HO HO	CH +	ОН						
543.	TOH HO OH	H ₂ O	25	90	6	-14	540	Unbuffered.

Table 2. (Continued)

No.	reaction	solvent	<i>T</i> / °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
	Me Me -O NO ₂ Me Me							
	Me COOH Me) —соон						
544.	O ₂ N	CHCl ₃	30	120	4	+16.2	541	$\Delta V = +15.6, p2$
545.		CH ₂ ClCH ₂ Cl	30	120	4	+16.7	541	$\Delta V = +18.6, p2$
546.		acetone	30	120	4	+22.3	541	$\Delta V = +22.3, p2$
547.		DMSO	30	60	3	+11.5	541	$\Delta V = +7.9, \text{ p2}$
Et ₂ N_	NEt ₂ Et ₂ N O NMe	NEt ₂						
548.		CHCl ₃	40	120	4	+10.9	542	
549.		PhCl	40	120	4	+7.0	542	
550. 551.		CH ₂ ClCH ₂ Cl MeCN	40 40	120 120	4 4	+8.4 +3.1	542 542	
Et ₂ N	NEt ₂ Et ₂ N O NPh	NEt ₂						
552.		CHCl ₃	40	100	4	+5.5	542	
553.		PhCl CH ₂ ClCH ₂ Cl	40 40	100 100	4 4	+5.1 +5.6	542 542	
554. 555.		MeCN	40	100	4	+4.7	542	
MeC 556. 557. 558. 559. 560.	COOMe N+ MeOOC COOMe	cy-C ₆ H ₁₁ Me PhMe PhCl Acetone MeCN	30 30 30 30 30	118 118 118 118	4 4 4 4	+3.3 +4.8 +6.1 +6.9 +7.7	543 543 543 543 543	
O ₂ N. 561.	COOH O_2	aq i-PrOH	ambient	39.2	5	+25/26	454, 544	i-PrOH 90 v%
Me ₃ Q	, p							
_{562.} ⁻ơ	O ₂ N	CCI ₄	25	123	6	+7.7	545	$\Delta V = +36$
O ₂ N—	NO_2 O O_2N NO_2 O O_2N	O ₂ N—NO						
563.	-N=N -N=N 2 + N ₂	MeCN	25	196	5	+5.1	546	$\Delta V = +21.4$
564. 565.		<i>n</i> -hexane EtOH	21 36	199 204	6 6	+17 +22	501 501	
566. Me 1	N=N Me $P=N$ P	EtOH	9	195	10	+16	501	
567. 568.	2 + N ₂	n-hexane EtOH	36 46	203 214	7 7	+13 +9	501 501	

Table 2. (Continued)

No.	reaction	solvent	T/ °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
<u> </u>	=N\)							
5(0)	F _t E _t) + N ₂	26	217	7	. 16	501	
569. Et	osition of Me ₃ COOCMe	n-hexane		217	7	+16		
570. decomp	osmon of Me ₃ Coocine	 2-methoxytetrahydropyran (MTHP) 2-ethoxytetrahydropyrar 			9 9	+10.5 +11.5	547 547	
572.		PhH-MTHF		1400	9	+3.9	547	PhH 70 mol%.
Me Me Me	O-O Me ₃ C•	+ CO ₂ + •OCMe ₃						
573.	Me Me	<i>n</i> -heptane	120	180	6	+7	548	
574. decomp	osition of (PhCOO) ₂	<i>n</i> -heptane	145	200	4	+1.2	549	<i>P</i> ≥ 50
575. decomp	osition of $(n-C_7H_{15}COC)$	n-heptane	80	250	5	+3.0	549	$P \ge 50$
576. decomp	osition of [Me ₃ CCH ₂ CH	$H(Me)CH_2COO_{12}$ <i>n</i> -heptane	80	250	6	+2.9	549	
	O ₂ N							
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N-NO ₂						
577. decomp	osition of RDX O ₂ Ń	THE	170	103	11	-12	550	
	O ₂ N_N	\sim N NO_2						
	, N	→ N _{NO}						
578. decomp 579.	osition of HMX O ₂ N	NO ₂ MeCN	205	103 6500	8 2-3	+25 +4.1	550 551	$\Delta V^{\neq} < 0 \text{ at } P > 6000$
379.	Me Me	Nac	200-300	0500	2-3	14.1	551	$P \ge 3600$
580. decomp	<i>></i> −'n-<	PhH	203	_	_	+47	550	
zoo, uccomp								
581. decomp	osition of N-NO ₂	PhH	240	-	-	+34	550	
	N-NO ₂							
582. decomp		PhH	235	-	-	+48	550	
	N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-N-							
583. decomp	osition of O ₂ N N	THF	163	-	-	+18	550	
	N—N-NO	2						
584. decompo	osition of O ₂ N	THF	205	-	-	+15	550	
505 1		N(Me)NO ₂	100			. 20	550	Dh.M. 050/
585. decompo	osition of	PhMe-piperidine	100	-	-	+39	550	PhMe 95 v%.
586. decomp		N(Me)NO PhMe-piperidine	140	-	-	+12	550	PhMe 95 v%.
1	Ņ							
	N.							
587. decompo	O ₂ N N osition of	O PhMe-piperidine	85	-	-	-3.5	550	PhMe 95 v%.
£00 4	ONO ₂		170	1000	11	, 12	550	A 1/# > 0 at D > 600
588. decomp	^ ^	LONO ₂ tetralin		1000	11	+12	550	$\Delta V^{\neq} < 0$ at $P > 600$.
_	osition of Me \checkmark \checkmark osition of N -nitrodimethy	tetralin		103	-	+17	552	D > 12.4
	osition of nitromethane	ylamine 2,2,4-trimethylpentane NaCl		103 5000	6 4	+30 0 >	553 554	$P \ge 12.4$ $P \ge 2000$
571. accomp	ostaon of muomediane	Naci	140	5000	4	0 >	JJ4	F ≤ ∠UUU

Table 2. (Continued)

No.	reac	tion	solvent	T/ °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
	02	Me N—∕							
592. decompositi 593.	ion of	Me in the presence of piperidine	THF THF	80 130	1300 800	4 5	-13 -18	555 555	$P \ge 600$ $P \ge 200$
594. decompositi		Me N Me in the presence of piperidine	THF	200	600	4	+3.5	555	
	М	le_Me							
595. decompositi	ion of O2	Me in the presence of piperidine	THF	235	1000	6	-13	555	$P \ge 80$
596. decay of HO	oc^cd	ООН	single crystal	70	200	4	+35	556	q2
597. decay of HC	ooc^	СООН	single crystal	105	200	4	+32	556	q2
598. decay of HO	oc^	Соон	single crystal	66	200	4	+45	556	q2
599. decay of HC	ooc~	СООН	single crystal	100	200	4	+39	556	q2
600. decay of HC	ooc^	СООН	single crystal	112	200	4	+43	556	q2
601. decay of HC	ooc^	СООН	single crystal	87	200	4	+50	556	q2
602. co-polymeri	zation of	α-methylstyrene with oxygen	neat	50	3	8	-1800	557	
603. ethanolysis 604.	of MeBr		EtOH EtOH	40 60	98 98	3 5	-21 -26	558 559	
605. hydrolysis o	of EtBr		H_2O	25	98	4	-11/12	559	
606. hydrolysis o	of <i>n</i> -PrBr		H_2O	25	98	4	-11/12	559	
607. ethanolysis	of n-PrB	r	EtOH	40	98	4	-26	559	
608. hydrolysis o	of n-BuB	r	H_2O	25	98	4	-9	559	
609. ehanolysis o	of n-BuB	r	EtOH	25	98	4	-24	559	
610. ethanolysis	of tert-B	uCl	EtOH	40	98	5	-29	558	
611. ethanolysis	of tert-B	uBr	EtOH	40	98	5	-24	558	
612. O ₂ N	CH ₂ C	$CI + H_2O \longrightarrow O_2N \longrightarrow CH_2OH$	ı + HCI aq MeCN	25	80	5	-30.3	560	MeCN 95 v%
613. solvolysis o	Ph CI	Me Me	aq EtOH	45	100	5	-13.3	561	EtOH 80 %
614. solvolysis o	Ph CI	Me Me	aq EtOH	45	100	6	-24.0	561	EtOH 80 %
OT4. SOLVOLYSIS O	,, o.		aq Etori	73	100	Ü	24.0	501	Elon 60 %
615. solvolysis o 616. 617. 618. 619. 620. 621. 622. 623. 624. 625.	of 🌕) `отs	EtOH EtOH EtOH aq EtOH aq EtOH aq EtOH aq EtOH MeOH MeOH MeOH	20 25 30 25 15 20 25 15 20 25 25	80 80 80 80 80 80 80 80 80	4 4 4 4 4 4 4 4	-13.0 -13.4 -13.6 -12.7 -11.3 -11.7 -12.1 -11.7 -13.0 -13.7	562 562 562 562 562 562 562 562 562 562	EtOH 95 v% EtOH 90 v% EtOH 90 v% EtOH 90 v% EtOH 85 v%
626. solvolysis c 627. 628. 629. 630.	of PhCOC	CI	aq EtOH aq EtOH aq EtOH aq EtOH aq acetone	10 10 20 20 15	200 200 200 200 200 200	5 5 5 5 5	-15.5 -15.1 -15.7 -15.5 -21.3	563 563 563 563 563	EtOH 95 w% EtOH 90 w% EtOH 95 w% EtOH 90 w% acetone 95 w%

Table 2. (Continued)

No.	reaction		solvent	T/ °C	P/MPa	no of	ΔV_0^{\neq}	ref	remarks
						k data	/cm ³ mol ⁻¹		
631.			aq acetone	15	200	5	-17.3	563	acetone 90 w%
632.			aq acetone	25 25	200	5	-18.5	563	acetone 95 w%
633.			aq acetone	25 15	200 200	5 5	-17.0	563 563	acetone 90 w% dioxane 95 w%
634. 635.			aq 1,4-dioxane aq 1,4-dioxane	15	200	<i>5</i>	-19.8 -25.7	563	dioxane 90 w%
636.			aq 1,4-dioxane	25	200	5	-20.9	563	dioxane 95 w%
637.			aq 1,4-dioxane	25	200	5	-27.1	563	dioxane 90 w%
037.		_	aq 1,+ dioxane	25	200	5	27.1	505	dioxane you we
O ₂ N-	$-$ COCI + H ₂ O \longrightarrow O ₂	⊵N— _ —СООН + Н							
638.	$\bigcirc COCI + H_2O \longrightarrow O_2$		aq MeCN	40	80	4	-26.3	560	MeCN 95 v%
	OCOF								
639. solvo			aqMeOH	40	100	4	-30.0	564	MeOH 80 %
640.			aqMeOH	50	100	4	-35.4	564	MeOH 80 %
641.			aqMeOH	40	100	4	-32.6	564	MeOH 90 %
642.			aqMeOH	50	100	4	-39.4	564	MeOH 90 %
643.			aqEtOH	40	100	4	-27.7	564	EtOH 60 %
644.			aqEtOH	50	100	4	-34.3	564	EtOH 60 %
645.			aqEtOH	40	100	4	-29.3	564	EtOH 70 %
646.			aqEtOH	50	100	4	-36.3	564	EtOH 70 %
647.			aqEtOH	40 50	100	4	-31.7	564	EtOH 80 %
648.			aqEtOH	50	100	4	-37.0	564	EtOH 80 %
649.			aqEtOH	50	100	4	-35.8	564	EtOH 90 %
650.			aq CF ₃ CH ₂ OH	35	50	3	-13.7	564	TFE 90 w%
651.			aq CF ₃ CH ₂ OH	35	50	3	-12.7	564	TFE 80 w%
652.			aq CF ₃ CH ₂ OH	35	50	3	-12.0	564	TFE 70 w%
653, solvol	lysis of MeOCOCl		EtOH	20	80	4	-21.7	562	
654.	., 0 0000		EtOH	25	80	4	-24.6	562	
655.			aq EtOH	20	80	4	-22.9	562	EtOH 90 v%
656.			aq EtOH	25	80	4	-25.6	562	EtOH 90 v%
657.			aq EtOH	20	80	4	-23.8	562	EtOH 80 v%
658.			aq EtOH	25	80	4	-25.9	562	EtOH 80 v%
659.			MeOH	20	80	4	-23.3	562	
660.			MeOH	25	80	4	-25.2	562	
661.			aq MeOH	20	80	4	-23.4	562	MeOH 90 v%
662.			aq MeOH	25	80	4	-25.5	562	MeOH 90 v%
663.			aq MeOH	20	80	4	-23.7	562	MeOH 80 v%
664.			aq MeOH	25	80	4	-25.8	562	MeOH 80 v%
	lysis of PhOCOCl		EtOH	5	50	3	-29.2	562	
666.			EtOH	10	50	3	-34.2	562	5.011.00 %
667.			aq EtOH	5	50	3	-32.8	562	EtOH 90 v%
668.			aq EtOH	10	50	3	-35.3	562	EtOH 90 v%
669.			aq EtOH	5	50	3	-34.4	562	EtOH 80 v%
670.			aq EtOH	10	50	3	-36.8	562	EtOH 80 v%
671.			MeOH	.5	50	3	-33.8	562	
672.			МеОН	10	50	3	-36.2	562	
672	0 ₂ N		M ON	10	00	4	22.0	540	MaCN 0507
673. solvo	iysis or —		aq MeCN	10	80	4	-22.9	560	MeCN 95 v%
674. solvo	O ₂ N————————————————————————————————————	OCI	MaQU	25	80	5	-40.3	560	
674. solvo.	19818 01		MeOH EtOH	25 25	80	4	-40.3 -55.7	560	
	ÇN Me	ÇN Me							
	Me hv		,Me						
676.	CN Me	CN Me	MeCN	25	256	6	+6.8 ^{r2}	565	$\delta \Delta V^{\neq} = -9.3^{\circ 2}$
070.		ÇN Me		23	230	J	. 0.0	203	<u> </u>
^	CN Me Me		, Me						
	+ + hv	\\ \ -\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u></u>						
	Me	~ ~ ~ ~	Me						
677.	CN Me	ĊN Me	MeCN	25	256	6	+6.5 ^{r2}	565	$\delta \Delta V^{\neq} = -8.2^{\circ 2}$
	ÇN	ĊИ							
	Me Me hv	Me	 Me Me						
	リ ル カ	ヘス ペッ ス	+•↓ Me				_		•
678.	1	✓ ✓ Me ×	ме MeCN	25	256	6	+6.7 ^{r2}	565	$\delta \Delta V^{\neq} = -8.1^{\circ}$
570.	CN	ĊN							

Table 2. (Continued)

No.	reaction		solvent	<i>T</i> / °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
679.	Me He hv Me CN	CN Me Me Me Me CN Me Me	MeCN	25	256	6	+9.6 ^{r2}	565	δΔV≠ - -10.6 ^{s2}
NC 680.	+ NC Ne NV NE NV NE	CN Me Me	MeCN	25	256	6	+7.7 ^{r2}	565	$\delta\Delta V^{\neq} = -8.4^{\circ}2$
681.	CN Me	+ +++ CN Me CN Me	MeCN	25	256	6	+7.8 ^{r2}	565	$\delta\Delta V^{\neq} = -8.2^{\circ 2}$
NC (682.	CN Me Me NC	+ ++++++++++++++++++++++++++++++++++++	MeCN	25	256	6	+7.6 ^{r2}	565	$\delta \Delta V^{\neq} = -8.1^{\circ 2}$
683.	CN Me	CN Me	MeCN	25	256	6	+6.9 ^{r2}	565	$\delta\Delta V^{\neq} = -7.1^{\circ}$
NC (CN Me NC hv Me NC Me	CN He Me		25	256	6	+7.3 ^{r2}	565	$\delta\Delta V^{\neq} = -7.4^{\rm s2}$
NC 685.	CN Me NC NMe NMe Me NMe Me Me Me Me Me	L-J	Ме МеСN	25	256	6	+7.4 ^{r2}	565	$\delta\Delta V^{\neq} = -7.7^{\circ 2}$
686.	hv hv Me Me Me	+ + Me	MeCN	25	256	6	+9.0 ^{r2}	565	$\delta\Delta V^{\neq} = -11.0^{\circ2}$
687.	Me Me Me	He He	MeCN	25	256	6	+10.3 ^{r2}	565	$\delta\Delta V^{\neq} = -11.6^{\circ 2}$
688.	Me hv Me Me	+ H++	MeCN	25	256	6	+11.0 ^{r2}	565	$\delta \Delta V^{\neq} = -12.2^{s2}$
689.	+ Me Me hv Me Me Me	+ Me Me Me	MeCN	25	256	6	+9.5 ^{r2}	565	$\delta\Delta V^{\neq} = -10.0^{\circ 2}$
690.	Me Me hv Me hv Me Me Me Me		MeCN	25	256	6	+9.2 ^{r2}	565	$\delta\Delta V^{\pm} = -9.6^{\circ 2}$
691. ^{p-BrC} 6 692. 693. 694.	H ₄ SO ₃ CH ₂ CH ₂ Ph + C ₅ H ₅ N──→ C ₅ H ₅ N⁺(CH ₂ CH ₂ Ph + BrC ₆ H ₄ SO ₃	MeCN MeCN MeCN MeCN	40 45 50 50	100 200 150 200	3 5 4 5	-12.3 -16.9 -10.3 -15.9	566 567 566 567	

Table 2. (Continued)

No. reaction	solvent	<i>T</i> / °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
695. 696. 697.	MeCN MeCN MeCN	50 55 60	200 200 150	5 5 4	-18.6g1 -15.6 -9.6	568 567 566	
m -NO ₂ C ₆ H ₄ SO ₃ CH ₂ CH ₂ Ph + C ₅ H ₅ N \longrightarrow							
698. $C_5H_5N^+CH_2CH_2Ph + m-NO_2C_6H_4SO_3^-$	MeCN	50	200	5	-4.3g1	566	
$699. ^{p\text{-CIC}_6\text{H}_4\text{SO}_3\text{CH}_2\text{CH}_2\text{Ph}} + C_5\text{H}_5\text{N} \xrightarrow{\hspace*{1cm}} C_5\text{H}_5\text{N}^+\text{CH}_2\text{CH}_2\text{Ph} + \text{CIC}_6\text{H}_4\text{SO}_3 \xrightarrow{\hspace*{1cm}} C_5\text{H}_5\text{N}^+\text{CH}_2\text{CH}_2\text{Ph} + \text{CIC}_6\text{Ph}_3\text{CH}_2\text{CH}_2\text{Ph} + \text{CIC}_6\text{Ph}_3\text{CH}_2\text{CH}_2\text{Ph}_3 \xrightarrow{\hspace*{1cm}} C_5\text{Ph}_5\text{N}^+\text{CH}_2\text{CH}_2\text{Ph}_3 \xrightarrow{\hspace*{1cm}} C_5\text{Ph}_3\text{Ph}_3 \xrightarrow{\hspace*{1cm}} C_5\text{Ph}_3 \xrightarrow{\hspace*{1cm}} C_5\text{Ph}_3$	MeCN	50	200	5	-9.2g1	566	
700. $PhSO_3CH_2CH_2Ph + C_5H_5N \longrightarrow C_5H_5N^+CH_2CH_2Ph + PhSO_3^-$	MeCN	50	200	5	-15.4g1	566	
701. p -MeC ₆ H ₄ SO ₃ CH ₂ CH ₂ Ph + C ₅ H ₅ N \longrightarrow C ₅ H ₅ N $^+$ CH ₂ CH ₂ Ph + MeC ₆ H ₄ SO ₃ Me Me	³ MeCN	50	200	5	-18.6 ^g ¹	566	
P-BrC ₆ H ₄ SO ₃ CH ₂ CH ₂ Ph+ N → Ph → N ⁺ + BrC ₆ H ₄ SO ₃ → N ⁺ + BrC ₆ H ₄ SO ₃ → N ⁺ → N ⁺ → N ⁺ → Ph → N ⁺ → P	MeCN MeCN MeCN MeCN	45 50 50 55	200 200 200 200 200	5 5 5 5	-15.3 -14.4 -13.5g1 -13.5	567 567 568 567	
<i>p</i> -BrC ₆ H ₄ SO ₃ CH ₂ CH ₂ Ph + N NH ₂ → NH ₂ + BrC ₆ H ₄ SO ₃ ⁻ 706. Ph NH ₂ + BrC ₆ H ₄ SO ₃ ⁻ 707. 708. 709.	MeCN MeCN MeCN MeCN	45 50 50 55	200 200 200 200 200	5 5 5 5	-12.6 -12.3 -15.0g1 -11.4	567 567 568 567	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MeCN	50	200	4	-12.8 ^{g 1}	568	$P \ge 50$.
<i>p</i> -BrC ₆ H ₄ SO ₃ CH ₂ CH ₂ Ph + N + BrC ₆ H ₄ SO ₃ 711. Me Me 712. 713. 714. 715. 716. 717.	MeCN MeCN MeCN MeCN MeCN MeCN MeCN	35 40 45 45 50 50	200 200 200 200 200 200 200 200	5 5 5 5 5 5 5	-15.5 -15.2 -15.7 -14.6 -15.4 -14.3	568 568 567 568 567 568 567	
718. p -BrC ₆ H ₄ SO ₃ CH ₂ COPh + C ₅ H ₅ N \longrightarrow C ₅ H ₅ N ⁺ CH ₂ COPh + BrC ₆ H ₄ SO ₃ 719. 720.	MeCN MeCN MeCN	35 45 55	150 150 150	4 4 4	-14.6 -13.7 -13.3	569 569 569	
$p\text{-BrC}_6\text{H}_4\text{SO}_3\text{CH}_2\text{COPh} + N \longrightarrow \text{Me} + \text{BrC}_6\text{H}_4\text{SO}_3$ 721.	MeCN	45	150	4	-16.5g1	569	
p-BrC ₆ H ₄ SO ₃ CH ₂ COPh + N PhOC P + BrC ₆ H ₄ SO ₃ + BrC ₆ H ₄ SO ₃ Ac	MeCN	45	150	4	-14.1g1	569	
$p\text{-BrC}_6\text{H}_4\text{SO}_3\text{CH}_2\text{COPh} + \text{N} + \text{BrC}_6\text{H}_4\text{SO}_3$ 723. Me	MeCN	45	150	4	-14.3g1	569	
p-BrC ₆ H ₄ SO ₃ CH ₂ COPh + N PhOC PhOC P P P P P P P P	MeCN	45	150	4	-18.4g1	569	
725. $PhCH_2Cl + C_5H_5N \longrightarrow C_5H_5N^+CH_2Ph + Cl^-$ 726.	DMF DMF	40 50	200 200	6 6	-5.1 -8.1	570 570	
727. p -NO ₂ C ₆ H ₄ CH ₂ Cl + C ₅ H ₅ N \longrightarrow C ₅ H ₅ N ⁺ CH ₂ C ₆ H ₄ NO ₂ + Cl ⁻ 728.	DMF DMF	40 50	200 200	6 6	-4.5 -7.1	570 570	

Table 2. (Continued)

No.	reaction	solvent	<i>T</i> / °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
729. <i>p-</i> MeC ₆ H ₄ 730.	$CH_2CI + C_5H_5N \longrightarrow C_5H_5N^*CH_2C_6H_4Me + CI^-$	DMF DMF	40 50	200 200	6 6	-5.5 -10.9	570 570	
731. Et ₃ N + Etl 732. 733.	I 	MeOH EtOH n-PrOH	40 40 40	200 200 200	7 7 7	-33.1 -29.7 -27.3	571 571 571	
734. 735. 736. 737.		n-BuOH n-PentOH i-PrOH sec-BuOH	40 40 40 40	200 200 200 200	7 7 7 7	-26.5 -26.2 -31.2 -28.2	571 571 571 571	
	$I_5N \longrightarrow C_5H_5N^+Me + I^-$	MeCN	45	110	7	-28.5	572	
Me Mel + N	Me Me−N ⁺							
739. Me Me Mel + N	Me CMe ₃ Me CMe ₃ Me CMe ₃ + I⁻	MeCN	45	110	6	-30.8	572	
740. Me	CMe ₃ Me CMe ₃	MeCN	45	120	6	-32.5	572	
Mel + N √_= 741.	Me-N + 1 CMe ₃	MeCN	45	100	6	-21.4	572	
742. PhCOCH ₂	$_{2}$ Br + C ₅ H ₅ N \longrightarrow C ₅ H ₅ N ⁺ CH ₂ COPh + Br ⁻	МеОН	40	100	8	-19.9	573	ΔV (40 °C) = -31.9
743. PhCOCH ₂	$_{2}$ Br + $C_{5}H_{5}N \longrightarrow C_{5}H_{5}N^{+}CH_{2}COPh + Cl^{-}$	МеОН	40	100	3	-30	573	<i>P</i> ≥ 40
744. <i>p</i> -BrC ₆ H ₄ C	$COCH_2Br + C_5H_5N \longrightarrow C_5H_5N^+CH_2COC_6H_4Br + B$	r MeOH	40	100	5	-19.8	573	ΔV (40 °C) = -26.0
745.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Br ⁻ MeOH	40	100	3	-48	573	$\Delta V (40 ^{\circ}\text{C}) = -32$ $P \ge 40$
<i>p</i> -BrC ₆ H₄C 746.	$COCH_2Br + N''$ \longrightarrow Me \longrightarrow $BrC_6H_4COCH_2-N^{+}$ \longrightarrow Me $+$ Br	МеОН	40	100	5	-16.9	573	$\Delta V (40 ^{\circ}\text{C}) = -31.3$
<i>p</i> -BrC ₆ H₄C								
747.	BrC ₆ H ₄ COCH ₂ -N ⁺ ————————————————————————————————————	МеОН	40	100	5	-22.1	573	ΔV (40 °C) = -32
748. ^{PhCOCI} + 749.	$C_5H_5N \longrightarrow C_5H_5N^+COPh + Cl^-$	MeCN MeCN	10 20	100 100	4 4	-41.1 -45.6	574 574	
Me————————————————————————————————————	$COCI + C_5H_5N \longrightarrow C_5H_5N^+COC_6H_4Me + CI^-$	MeCN MeCN	10 20	100 100	4 4	-38.4 -39.7	574 574	
752. 753.	$ \longrightarrow C_5H_5N \longrightarrow C_5H_5N^+COC_6H_4NO_2 + C_5H_5N^+COC_6H_$	MeCN MeCN MeCN	10 20	100 100	4 4	-53.5 -38.3	574 574	
754. NH	+ Me ₃ S ⁺	-	-	-	-	-3	575	
755. Me 1	NH ₂ + Me Me COOMe	MeCN	36	-	-	-48	576	
Me NH	2 + COOMe Me COOMe	Machi	26			50	574	
756. ^{Me}	IVIC	MeCN	36	-	-	-50	576	

Table 2. (Continued)

No. reaction	solvent	<i>T</i> / °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
Me $NH_2 + COOMe$ Me $NH_2 + NH_2 + NH_$	Me COOMe McCN	36	-	-	-49	576	
758. Me NH ₂ + COOMe Me H	COOMe MeCN	36	-	-	-53	576	
Me Me COOMe Me Me Me CO	OMe MeCN	36	-	-	-53	576	
Me NH ₂ + COOMe Me Me Me C	OOMe MeCN	36	-	-	-42	576	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	COOMe McCN	36	-	-	-45	576	
Me + COOMe Me	7000						
762.	Me MeCN	36	-	-	-51	576	
Me Me COOMe Me 763. O Me O	Me COOMe McCN	36	-	-	-46	576	
PH H O'Na*	+ MeOH						
764.	МеОН	52	660	8	-19.3	577	
AcO $+ H_2O \longrightarrow AcOH + HO$	-NO ₂						
765. Imidazole 766.	H ₂ O H ₂ O	15 25	100 100	4 4	-17g1 -11.8	578 578	
767.	H ₂ O	35	60	4	-16g1	578	
	H ₂ O/hexane reversed micelles	15	100	4	-10 ^{g 1}	578	$[H_2O]/[AOT] = 12.1$
769. AOT ^{a2} /H	H ₂ O/hexane reversed micelles	15	100	4	-12g1	578	$[H_2O]/[AOT] = 23.4$
	H ₂ O/hexane reversed micelles	25	100	7	-3.2	578	$[H_2O]/[AOT] = 11.2$
	H ₂ O/hexane reversed micelles	25	100	4	-6.4	578	$[H_2O]/[AOT] = 12.9$
	H ₂ O/hexane reversed micelles	25	100	4	-10.4	578 578	$[H_2O]/[AOT] = 23.7$
	H ₂ O/hexane reversed micelles H ₂ O/hexane reversed micelles	25 25	100 100	4 4	-14.4 -15.2	578 578	$[H_2O]/[AOT] = 35.2$ $[H_2O]/[AOT] = 38.7$
	H ₂ O/hexane reversed micelles	25	100	4	-16.0	578	$[H_2O]/[AOT] = 39.9$
	H ₂ O/hexane reversed micelles	35	100	6	-16g1	578	$[H_2O]/[AOT] = 12.2$
	H ₂ O/hexane reversed micelles	35	100	4	-11g1	578	$[H_2O]/[AOT] = 24.6$
	H ₂ O/hexane reversed micelles	35	80	4	-19g1	578	$[H_2O]/[AOT] = 34.4$
NH3+ COO. OH OH	HO + H ₂ O COOH	70	00	·	10	570	
779. H	H ₂ O	70	80	5	-10	579	
NH2 + COOMe OH	+ H ₂ O						
780. H	H ₂ O	20	60	4	-16	579	

Table 2. (Continued)

No.	reaction		solvent	T/ °C	P/MPa	no of k data	ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
	n-Bu₃	Sn_O							
<i>n</i> -Bu₃Sn—781.	+ CCI ₃ CHO C	il ₃ C	n-Bu ₃ SnCH ₂ CHCH ₂	37.5	80	5	-33.4	239	
n-C ₇ H ₁₅ C⊦ 782.	n-Bu₃Sn————————————————————————————————————	<i>n</i> -C ₇ H ₁₅ OH	CHCl ₃	30	800	4	-29.1	580	<i>P</i> ≥ 300
<i>n</i> -C ₇ H ₁₅ CF	n-Bu ₃ Sn————————————————————————————————————	n-C ₇ H ₁₅	Me CHCl ₃	30	800	4	-34.1	580	<i>P</i> ≥ 300
п-С ₇ Н ₁₅ СН 784.	O + ^{n-Bu} 3Sn—Me	<i>n</i> -C ₇ H ₁₅	Me CHCl ₃	30	800	4	-34.4	580	<i>P</i> ≥ 300
<i>n</i> -C ₇ H ₁₅ C⊦	HO + ^{n-Bu} 3Sn Me	<i>n</i> -C ₇ H ₁₅ √	Me						
785.		Ġ	H CHCl ₃	30	800	4	-30.1	580	<i>P</i> ≥ 300
786. Me ₄ Sn + I ₂ 787. 788. 789. 790. 791.	—→ Me ₃ SnI + MeI		CCI ₄ MeOH CCI ₄ MeOH CCI ₄ MeOH	10 10 25 25 35 35	120 160 120 160 120 160	5 6 5 6 5	-48.2 -38.8 -54.8 -45.1 -59.9 -52.7	581 582 581 582 581 582	
792. Me ₄ Sn + I, 793. 794. 795. 796. 797.	₂ → Me ₃ SnI + MeI		hexane hexane hexane acetone acetone acetone	10 25 35 10 25 35	160 160 160 160 160 160	6 6 6 6 6	-51.0 -59.6 -65.0 -39.4 -45.3 -51.0	583 583 583 583 583 583	
N_ Ph-N, H	Ph N N Ph	Ph H S	Ph N N C N N N N N N N N N N N N N N N N						
798. 799. 800. 801.			Ph PhMe CCl ₄ PhCl CH ₂ ClCH ₂ Cl PhNO ₂	20 20 20 20 20 20	120 90 120 120	5 5 5 5	+7.0 +7.0 +6.6 +5.7 +5.2	584 584 584 584 584	
Ph-N, H	Ph N N H N N N H	Ph N H	Ph N Ag S						
803. 804. 805.		X	Ph CH ₂ Cl ₂ CH ₂ Cl CH ₂ Cl PhNO ₂	20 20 20	90 120 80	4 5 4	+5.9 +7.9 +6.4	584 584 584	
X N-	+ Pd(OAc) ₂	Me Pd O Pd R Pd Pd Me							
806. X = H, R	x = n-Pr	×	PhMe	45	101	5	-12	585	

Table 2. (Continued)

No. react	ion	solvent	<i>T</i> / °C	P/MPa	no of		ref	remarks
807. 808. X = H, R = Ph 809. 810. X = 4-MeO, R = Ph 811. X= 2-NO ₂ , R = Ph 813. 814. X= 3-NO ₂ , R = Ph 815. 816. X= 4-NO ₂ , R = Ph 817. 818. X = H, R = CH ₂ Ph 819. 820. 821. X = 4-Cl, R = CH ₂ Pl 822. 823. X = 3-NO ₂ , R = CH ₂	n Ph Me	AcOH PhMe AcOH AcOH AcOH AcOH AcOH AcOH AcOH AcOH	7/°C 25 70 25 50 20 70 20 70 20 50 35 45 60 20 50 45	P/MPa 101 186 101 101 101 101 101 101 101 101 101 10		ΔV_0^{\pm} $\frac{(\text{cm}^3\text{mol}^{-1})^2}{(\text{cm}^3\text{mol}^{-1})^2}$ $\frac{-17}{-23}$ $\frac{-24}{-15}$ $\frac{-12}{-21}$ $\frac{-16}{-25}$ $\frac{-17}{-15}$ $\frac{-15}{-16}$ $\frac{-12}{-17}$ $\frac{-15}{-16}$		remarks
Me N-R + F 825. R = Ph 826. 827. R= 2-MeC ₆ H ₄ 828.	Pd(OAc) ₂ Me Pd Pd Pd Pd Pd N N N Me Me	PhMe AcOH PhMe AcOH	60 25 70 20	101 91 101 101	5 6 5 4	-24 -17 -20 -11	585 586 585 586	
N-R X	le Me	PhMe AcOH	50 45	101 101	5 3	-11 -17	585 586	
Me Ne	+ Pd(OAc) ₂ Me Me Me Me Me Me Me X Me Me X Me Me X	PhMe AcOH AcOH PhMe AcOH	50 20 30 50 30	101 101 101 101 101	5 4 4 5 4	-12 -11 -15 -17 -13	585 586 586 585 586	

Table 2. (Continued)

No.	reaction	solvent	<i>T</i> / °C	P/MPa		ΔV_0^{\neq} /cm ³ mol ⁻¹	ref	remarks
	CH ₂ OAC CH ₂ OAC OMe Ph ₃ CCIO ₄ OAC OAC							
OAc 836.	$\frac{H_2OAc}{AC}$ OAC	CH $_2$ Cl $_2$	20	1400	9	-8	587	t2
	H ₂ OH OH OH OH							
837.	OH OH CH ₂ OH OH CH ₂ OH	H ₂ O	30	127	5	-29	588	$\Delta V^{\neq} > 0$ at $P > 50$.
	CH ₂ OH CH ₂ OH OH OH OH OH OH	H ₂ O	40	90	4	+22	589	
нон ₂ 839.	NH ₂ + HOH HOH HOH HOH HOH HOH HOH HOH HOH H	МеОН	70	60	4	-17	579	
HOH ₂ HO 840.	OH OH O Me + NH3	+ etc OO ⁻ H ₂ O	95	60	4	+17	579	
	olysis of maltose catalyzed by immobilized glucoamylase	H ₂ O	25	127	4	+1	590	$\Delta V = -4$ for Michaelis
	olysis of maltotriose catalyzed by immobilized glucoamylase	H ₂ O	25	98	4	+1	590	constant $\Delta V = -4 \text{ for Michaelis}$
843. H ⁺ -	catalyzed hydrogen exchange of CH ₃ CONHCH ₃ with H ₂ O	H_2O	66	400	17	+1.7	591	constant [amide] = 16 mol%.
	-catalyzed hydrogen exchange of CH ₃ CONHCH ₃ with H ₂ O		66	400	17	+11.0	591	[amide] = 16 mol%.
	atalyzed hydrogen exchange of CH ₃ CONHCH ₃ with H ₂ O	H ₂ O	66	400	17	-9.0	591	[amide] = 16 mol%.
N N	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
846.	он он	н ₂ о	80	220	7	-15	431	$\Delta V^{\neq} > 0$ at $P > 120$
847. ADP	+ H ₂ O AMP + Pi	H ₂ O	80	220	6	-15	431	$\Delta V^{\neq} > 0$ at $P > 120$

Table 2. (Continued)

No.	reaction	solvent	<i>T</i> / °C	P/MPa		ΔV_0^{\neq}	ref	remarks
					k data	/cm ³ mol ⁻¹		
Ме—	N-N=NMe + PhCOOH →							
848.	MeC ₆ H ₄ NH ₂ + PhCOOMe + N ₂	CHCl ₃	29.8	100	8	-15	592	
849.		MeCN	29.8	120	6	-4	592	
2	\rightarrow OH + Me ₂ SO + Ac ₂ O \rightarrow 2 \rightarrow O + Me ₂ S	S + 2AcOH .						
850.	/ 1 12 12	DMSO	58	100	5	-25.2	593	
2 <	OH + N=C=N- + Me ₂ SO	-						
851.	2 - Y-C-Y- + Me	₂ S DMSO-CHCl ₃	31	102	6	-34	593	DMSO 25 v%.
852. MeCH(NHCl)COO $^-$ + H ₂ O \longrightarrow MeCHO + NH ₃ + HCl +	CO ₂ H ₂ O	26	250	28	+50	594	$\Delta V^{\neq} \approx 0$ at $P > 100$.
-o	N N N NO₂ OH							
853.	-ONNO ₂	aqDMSO	25	200	6	-22	595	DMSO 80 v%.

al Chemically induced dynamic electron polarization. bl Observed by laser flash photolysis of the quinone solution. cl Observed by laser flash photolysis of the benzoic acid solution in the presence of hydrogen chloride. The CIDEP signal followed a double exponential decay. The faster decay was assigned to the protonation of the anion radical, and the slower decay was assigned to the spin—lattice relaxation of the neutral radical. dl Observed by laser flash photolysis of the benzophenone solution. el Measured indirectly by monitoring the concentration of diphenylisobenzofuran. fl 1,4-Diazabicyclo[2.2.2]octane. gl Calculated by one of the authors (T.A.). hl The log k-P plot shows a maximum. il Extrapolated value for [1-BrC₁₀Hr] = 0: $\Delta V_0^{\dagger} = -8.6$. jl The rate constants were calculated from the fluorescene lifetime in *J. Phys. Chem.* (1993, 97, 177) and the fluorescence quantum yield reported previously (Tanaka, F. Rev. Phys. Chem. Jpn. 1974, 44, 65). kl For the pressure ranges and the results for other temperatures, see the original paper. ll For the results in hexane, see: Holroyd, R. A.; Schwarz, H. A.; Stradowska, E.; Ninomiya, S.; Itoh, K.; Nishikawa, M. *J. Phys. Chem.* 1994, 98, 7142. ml Ortho-positronium. ml Pressure-averaged ($P \le 10$ MPa) activation volume. ol From l3C spin—lattice relaxation rates. sl Poly(methyl methacrylate). ll Polystyrene. ul Poly(bisphenol A carbonate). vl Cyclopentadienyldiethylenethodium(l). vl Sodium dodecyl sulfate. yl For the related works, see also: Hara, K. Physica B 1986, 139 & 140, 705; Hara, K.; Kometani, N.; Kajimoto, O. *J. Phys. Chem.* 1996, 100, 1488. vl Hexadecyltrimethylammonium bromide. al Aerosol-OT (Tokyo Kasei): sodium di(2-ethylhexyl) sulfosuccinate, NaO₃SCH(COOC₈H₁₇)CH₂COOC₈H₁₇. bl For the overall reaction. $\Delta \Delta V = V_{cis} - V_{trans} = -5.3$. cl Pressure-averaged ($P \le 300$ MPa) activation volume. dl The endo/exo ratio (= 35/65) did not change with pressure. election inhibitor. sl In the presence of bis(3-tert-butyl-4-hydroxy-5-methyl

these corrections were made properly, and readers who wish to consult the original papers should be alert to that complication. Table 2 contains a few results obtained in solid media such as films and host crystals; this was done despite the title of this article, in instances where related reactions were studied in solutions under pressure. The reader will surely be aware of the fact that a solid subject to a uniaxial stress cannot be considered to be under hydrostatic pressure, and volume changes calculated on that basis, while of interest, must be regarded with some reservation. As before, the text does not offer comment on every single entry in the table; rather, we sought to call attention only to especially useful and interesting chemistry.

The rate at which new and additional data on highpressure effects in organic reactions are accumulating continues unabated, at about 100 per year; however, the nature of the processes investigated is clearly changing. Where our previous reviews dealt almost exclusively with well-known and traditional reactions such as displacements, additions, eliminations, and pericyclic chemistry, the interests of the community has in the past decade shifted to new areas, including fast processes in which the use of transition state theory may become questionable, electron transport in organic media, reactions in supercritical fluids, and so on. In some of these areas, the interpretation of the data is by no means straightforward, or widely agreed to, and it may therefore be anticipated that high-pressure organic chemistry will continue as a lively territory for research.

B. Comments on Table 2

Sueishi^{453,454} has used the CIDEP phenomenon to open up to high-pressure scrutiny chemical reactions

with half-lives in the sub-microsecond domain (entries 1-6). For example, the photoreduction of 2,4,6trinitrobenzoic acid in aqueous 2-propanol containing chloride ion involves the radical anion the decay of which can be followed by means of emission in the electron spin frequency regime. The nine-line spectrum (due to H-3, H-5, and the p-nitro group) decays in two stages which were identified by means of their pressure dependence. The first step is a rapid protonation to give a neutral free radical the ESR spectrum of which is virtually identical with that of the precursor; support for this interpretation is provided by the activation volume of $+26 \text{ cm}^3 \text{ mol}^{-1}$. The second phase was not identified precisely, but the ΔV^{\dagger} value of +11 cm³ mol⁻¹ suggests that diffusion is an important part of the process, as the solvent viscosity has a pressure dependence which corresponds approximately to that volume change.

The same group has looked into the bimolecular spin exchange of stable free radicals such as tempone (2,2,6,6-tetramethyl-4-piperidone *N*-oxide; entries 7-34). The technique used was to study the effect of pressure on the change in line broadening that occurs when the concentration is varied. 455-458 The process is inhibited by the application of pressure, and it was initially postulated 458 that diffusion control was the reason. Especially convincing was the fact that ΔV^{\dagger} is negative in water, for indeed, the viscosity of water decreases when the pressure is raised within the range used. However, ΔV^{\dagger} is generally somewhat smaller than what would be anticipated on the basis of the Smoluchowski equation. ⁴⁵⁷ The deviations are largest in protic solvents, prompting the assumption that encounter complexes first form in such media. These complexes were estimated to involve a negative contribution to ΔV^{\dagger} , of about 3.5 cm³ mol⁻¹. Still later experiments with a wider variety of solvents as well as of radicals showed that the process is much more complex than previously believed, as some of the largest deviations from simple diffusion control occur in aprotic media such as acetone and hexane. Exchange probability and a steric factor were considered; further insights are likely to emerge from future investigations. The large difference between the activation volumes in pentane and hexane (entries 20 and 21) is especially remarkable.

Somewhat similar mechanisms have been considered for the quenching of singlet oxygen (entries 36–110). The process is accelerated by the application of pressure; the negative activation volumes are explained by the formation of encounter complexes with the solvent. The contractions are larger in those solvents which have low ionization potentials; presumably the complexes have considerably dipolar character. When the quenching is mediated by nitrogen-containing solutes, this polar nature of the intermediate is well-demonstrated by the strong solvent dependence: ΔV^{\ddagger} is the more strongly negative the less polar the solvent. In n-hexane, for example, ΔV^{\ddagger} reaches values as low as $-40 \, \mathrm{cm}^3 \, \mathrm{mol}^{-1}$.

The rates of quenching of both singlet and triplet states of anthracenes by oxygen in methylcyclohexane (entries 111–118) are in most instances reduced at high pressure. 464 Increased solvent viscosity is

responsible; but since the activation volumes are only about half of what would be expected on that basis, encounter complexes are also thought to play a role. The negative value for the 9,10-dicyano derivative is not understood at present. The pressure-promoted quenching of the ¹S state of perylene by 1-bromo- and 1-iodonaphthalenes in toluene is readily attributed to ⁴⁶⁵ and in accord with exciplex formation (stacking).

A very nice contribution to our knowledge of highpressure phenomena has been made by Holroyd and co-workers (entries 131–157). It has long been known that charged species in solution bring about electrostriction, a phenomenon well-explained by the Drude-Nernst equation. The relation predicts that the contraction should become exceptionally large in hydrocarbon media, because of their nonpolar nature. This prediction has never been verified for the simple reason that the necessary solutions could not be prepared. However, the predicted exceedingly large pressure effects have now been observed by the Holroyd group in pulse radiolysis experiments aimed at the process of electron attachment to various molecules in hydrocarbon liquids. 468–470

Their studies fall into two categories: the study of transport phenomena of electrons and that of their reactivity. Both provide information on partial molar volumes. In the experiments, liquid samples are exposed to a pulse of X-rays from a van de Graaff accelerator, which generates excess electrons and ions; hence, the current observed immediately after the pulses measures the electron concentration in the liquid. This makes it possible to determine excess electron mobilities if the liquid is free from electron-capturing impurities, and the rates of electron attachment to solutes deliberately added.

Studies of this sort shed light on the nature of electron traps in nonpolar liquids In some, such as tetramethylsilane, ⁵⁹⁶ the electron mobility is very high, indicating that the electron remains untrapped, or quasi-free. However, in many other liquids such as *n*-alkanes, ⁵⁹⁷ some alkenes, ⁵⁹⁸ and xylenes, ⁵⁹⁹ the mobility is low and strongly affected by the pressure. In the *n*-alkanes and in 1-pentene, ⁶⁰⁰ the mobility gradually decreases as the pressure is raised to 300 MPa; but in *o*- and *m*-xylene as well as in cyclohexene, the mobility increases with pressure.

To explain these effects, a two-state model was assumed for the low-mobility liquids in which quasifree and trapped electrons are in equilibrium. The observed mobility then depends on the position of that equilibrium, and the pressure dependence thus gives the sign and magnitude of the volume change associated with the trapping of electrons. For nhexane, *n*-pentane, and 1-pentene, ΔV_0 at 25 °C equals -22, -28, and -27 cm³ mol⁻¹, respectively, while in cyclohexene and o- and m-xylene, ΔV_0 equals 4, 21, and 22 cm³ mol⁻¹, respectively. Holroyd assumes the partial molar volume of the quasi-free electron to be zero, and that the observed volume changes reflect the partial molar volume of the trapped electron. Two terms contribute to this partial volume: electrostriction by the trapped electron, and the size of the cavity holding it; both are large and of opposite sign, which explains the apparently capricious differences between these liquids. The cavity radii are thought to range from 3.2 to 3.6 Å (and thus, their volumes from 83 to 108 cm³ mol $^{-1}$), and thence the electrostriction terms can be estimated as approximately $-100\pm25~\text{cm}^3~\text{mol}^{-1}$.

Electron capture by solutes also occurs with large volume changes. In general, both attachment and detachment rates can be measured. Solutes that have been studied include carbon dioxide, 468,469 pyrimidine, 601 butadienes, 470,602 benzene, 603 and toluene. 604,605 Attachment to these solutes is unfavorable in the gas phase (their electron affinities are negative), but in solution the polarization of molecules surrounding the ions stabilizes them, rendering the free energies for capture negative.

The equilibrium constants for these reactions increase with pressure, and reaction volumes range from -90 to -200 cm³ mol⁻¹ for these solutes in liquids such as tetramethylsilane and hexane. Here are a successful to electrostriction; a contribution from the formation of a "glass shell" has also been suggested. As expected, these electron attachment reactions also show large decreases in entropy (-25 to -40 eu). It is found that the relation

$$\Delta S/\Delta V = \alpha/\beta$$

applies to these reactions, where α is the coefficient of thermal expansion and β is the compressibility. Thus, the change in organization of the liquid by an ion in a nonpolar solvent is directly related to the density change.

A related case⁴⁷¹ is the capture of positronium by nitrobenzene (entries 158 and 159). In hexane, this species is thought to occupy a large "bubble" which collapses or is greatly reduced in size during the capture process; in benzene, which more nearly resembles nitrobenzene, there is no discernible pressure effect. Further investigations with other substrates and media are clearly desirable.

High-pressure NMR continues to provide new insights into physical and chemical phenomena. Experiments by Gillies et al. 472 furnish a very nice example: these authors measured the effect of pressure on ¹³C relaxation times and were able to relate their findings to rotational and translational motions through their volume requirements (entries 160-201). The precision of the results was low, nearly $20 \text{ cm}^3 \text{ mol}^{-1}$ in one instance, and averaging perhaps 5 cm³ mol⁻¹ for most others; nevertheless, comparing the data derived for several dicyclohexylalkanes and their temperature dependence reveals some enticing insights. The molecular shapes clearly influence these motions; thus, the more crowded species require the largest spaces to exercise them. The needed expansions generally diminish as the temperature is raised and the neat liquids become more tenuous. Surprisingly, the volume changes required for methyl group rotations are negative: these groups rotate more easily at high pressures than under ambient conditions. The drastic temperature variations in these cases can at present also not really be understood. In tetra-*n*-octyltin, the volume requirements for carbon relaxation increase with distance

from the central tin atom—a finding which makes intuitive sense. $^{473}\,$

Similar results (entries 202-211) were obtained in part by a German group⁴⁷⁴ by means of Raleigh scattering experiments; as might be expected, they find smaller (though still positive) activation volumes for the smaller molecules of diphenylmethane and diphenyl ether. These volume changes again diminish as the temperature is raised. An interesting and intuitively reasonable finding is that the more polar ether requires a larger space for overall motion than the isoelectronic hydrocarbon does. The still smaller molecules of acetonitrile, chloroform and benzene demand smaller volume expansions still, as Nakahara⁴⁷⁵ found by studying the deuteron relaxation times under pressure. D₂O in solution in these solvents requires even less space, and that for neat D₂O is negative. As the authors noted, however, quantitative interpretation is difficult, in part because of the complications introduced by hydrogen bonding.476

The importance of the medium viscosity in molecular motion is underscored by data obtained by Brower and Hayden in polymeric films.⁴⁷⁷ As might be expected, the positive activation volumes for the reorientation of rodlike molecules are extremely large, the more so the larger the solute. The nature of the polymer also has a substantial influence, with polystyrene exhibiting the largest pressure effect for all solutes.

Merbach's group^{478,479} has been able to uncover the complete volume profile of the two-step inclusion of two azo dyes in α -cyclodextrin in water (entries 230– 233). Both steps are accelerated, and both transition states are at volume minima. An intriguing sequence of events was proposed to account for the data, based on contributions from desolvation and resolvation of the sulfonate group, the original presence of two water molecules in the cavity, and hydrogen bonds between the host and parts of the dye. Jonas has studied several degenerate conformational processes (entries 234–242) which at low pressure have small, negative activation volumes. 480-482 As expected for internal rotations, the increase in crowding in the approach to the transition states leads to a reduced volume, although the Authors chose to interpret their data rather differently, in terms of Kramers theory. The same is true for the NMR coalescence of the two methyl groups in *N*,*N*-dimethyltrichloroacetamide;⁴⁸³ the activation volume for this process is positive as was observed by Lüdemann for a host of amides. A negative activation volume was found by Yamada and Sera⁴⁸⁴ for the phenyl group rotation inside the cavity of a [12]paracyclophane, and they interpreted this classically as the result of more efficient space utilization in the transition state (entries 245-246).

Hara has in a series of impressive papers^{485–493} drawn attention to the proposition that Kramers theory is more useful than transition-state theory to analyze pressure effects on fast reactions with activation energies of 5 kcal mol⁻¹ or less, and even above that value, it can make a substantial contribution (entries 247–274). A fundamental reason for this is that Kramers theory is based on a treatment of

chemical reactions as viscous flow processes, in which medium viscosity is an important parameter. The fast process of excimer formation in 1,3-dipyrenylpropane is a good example, with the pressure coefficient of the rate constant clearly related to the solvent viscosity, and not at all to the solvent polarity. Thus, in the long-chain solvent 2,6,10,14-tetramethylpentadecane, 485 the viscosity part of the activation volume is as large as $28 \text{ cm}^3 \text{ mol}^{-1}$ while the intrinsic part is only -2.5 cm³ mol⁻¹. Hara was able to use this probe as a device to gauge medium viscosity inside micelles. 488 However, his assumption 493 that transition-state theory cannot be applied to the ground-state isomerization of the oxadicarbocyanine shown in entries 271–274 seems unreasonable, if one considers the relatively large activation energy (14 kcal mol⁻¹) and the relatively nonviscous solvents used. The small positive activation volumes observed are reasonably explained as resulting from relief of the steric congestion existing in the initial state. The matter is discussed further at the end of this paper.

As ano has made an extensive study of the $Z \rightarrow E$ isomerization of 1,2-diphenyl substituted imines, azo compounds, and olefins (entries 275-371); the results have played a decisive role in the elucidation of the mechanisms involved. 494,498,499,502 Initially, a heterolytic cleavage of the carbon-nitrogen π bond followed by a rotation of the remaining single bond had been proposed for some *N*-alkylidineanilines on the basis of substituent effects. 606 However, it is now generally agreed that the reaction is brought about by the inversion of the nitrogen atom. 607 When the alkylidine group is an electron-withdrawing one such as hexafluoroisopropylidine, the reaction is accelerated by both electron-donating and -withdrawing substituents on the aniline moiety. The accelerations by the former groups were expected for the inversion mechanism because the electron attracting substituent should promote the conjugation of the lone pair on the nitrogen atom with the phenyl ring; however, the acceleration by the latter type of substituent was surprising, and invoked to suggest the intervention of the rotation mechanism. If the reaction proceeds via a highly polar rotational transition state, large negative activation volumes should be observed as in the push-pull substituted azobenzenes.⁶⁰⁸ The activation volumes listed in entries 334-336 clearly rule out the rotation mechanism. The small solvent effects^{494,499} also support this conclusion. The situation is the same in (phenylimino)pyrazolones. 494 On the basis of these experimental results, an inversion transition state was proposed in which the aniline moiety is in conjugation with the C-N π bond; 494,499 it was supported by ab initio calculations. 498

Large positive activation volumes in the isomerization of a stilbazolium betaine in aqueous solution⁵⁰² demonstrates that this reaction proceeds by rotation through the quinoid structure. The activation volume increases with temperature and with the addition of methanol, as expected for a desolvation process.

The small positive activation volumes for the isomerization of azoalkanes leave some room for uncertainty. They do not appear to rule out a radical

mechanism, but Neuman⁵⁰¹ has concluded that the reaction proceeds via nitrogen inversion. His conclusion is based on a comparison of these values with that of 1,2-bis(1-norbornyl)diazine⁶⁰⁹ (+6.1 cm³ mol⁻¹ at 85 °C). The reaction volume was 11.5 cm³ mol⁻¹ at 25 °C, and the volume increase in the activation step could be attributed to the increase in the freedom of motion of the bicyclic groups. However, the temperatures (9–46 °C) were rather lower in Neuman's reactions and the stabilities of the alkyl radicals are much higher than that of the 1-norbornyl radical. In view of these differences, it is difficult to exclude the possibility of the isomerization through the diazenyl radical.

The photoreduction of benzophenone in alcohols has been studied by Okamoto, 503 who found negative activation volumes for the hydrogen abstraction by the triplet as might be expected for atom transfers. In 2-octanol, a maximum was seen in the $\ln k$ vs Pplots, indicating that diffusion is beginning to be rate limiting; this did not happen with solutions in the lower alcohol homologues which are presumably less viscous. Also, in 5-methyl-3-heptanol, such a maximum was seen at 15 °C but not at 40 °C; this, too, hints at the onset of the influence of viscosity. Tamura⁵⁰⁴ similarly studied the photoreduction of benzoquinone and observed generally small pressure effects, but in the presence of cetyltrimethylammonium bromide micelles, a considerable (apparent) acceleration was noticed. The authors also found that benzoquinone steeply raises the critical micelle concentration, and attributed the pressure effect to that. Chan's data on the photoreduction of fluorene by acridine^{505,506} seem at variance with the other observations on such reactions, but as noted earlier, it is questionable whether rate data gathered in solid crystalline media can be confidently interpreted in terms of hydrostatic pressure effects (entries 398-402).

In collaboration with Moss, the Turro group has used laser flash photolysis technology to obtain the absolute rates of capture of various carbenes by olefins. The carbenes were formed from the corresponding diazirines. The results in entries 403-410, with the activation volumes ranging from -10 to $-18~\rm cm^3~mol^{-1}$, are consistent with early transition states involving the formation of two bonds, although intermediate complex formation is not ruled out.

The synthetic importance of the Diels-Alder reaction and its remarkable acceleration by pressure have led to much continued attention to this chemistry in several laboratories (entries 411-492). Thus, Jenner has reported⁵⁰⁸ several new cases in which α,β unsaturated esters and their analogues serve as the dienophiles; they show activation volumes even more negative than the reaction volumes. Secondary orbital interactions continue as one attractive interpretation of this phenomenon. Isaacs et al.⁵⁰⁹ have found that the use of Lewis acids to catalyze the cycloaddition of isoprene to N-phenylmaleimide leads to more negative activation volumes; bonding between the acids and the dienophile is a reasonable explanation for this observation. The same explanation may also apply to the solvent effect reported by these authors.

Zhulin reports two Diels—Alder reactions with activation volumes rather less negative than expected; he advances the unconventional view that this is "due to a change in the dynamic properties of the solvent, and not to the change of volume in the formation of the activated complex". ^{510,511} However, methylene chloride is not especially known for unusual solvent behavior at any pressure, and perhaps other cycloadditions should be studied in this medium before definite conclusions are reached.

The groups of Buback and Tietze have published their results with many Diels-Alder pairs. 512-518 The data are generally in the range now expected for the [4+2] cycloaddition of α,β -unsaturated ketones to vinyl ethers, but two points are worth noting. First, where both cis and trans stereoisomers are produced, the former uniformly have the more compact transition states. This is consistent with our knowledge of the smaller volume requirements of crowded molecules. The other fact that stands out is that in internal Diels-Alder reactions, with both diene and dienophile part of the same molecule, the activation volumes are reduced to substantially less negative values. This is reasonable if one considers that such substrates need not go through the process of creating an encounter complex.

The homofuran shown in entries 466 and 467 have remarkably small negative activation volumes which clearly indicate a different mechanism, and Klärner has proposed⁵¹⁹ that the reaction involves a prior opening of the bicyclic structure to give the moderately dipolar form shown:

A very important paper by Klärner⁵²⁶ in 1994 decisively broke new ground in the long-debated question whether concerted pericyclic reactions are more strongly accelerated by pressure than stepwise analogues. He was able to mimick the activation and reaction volumes for both types of process by means of a Monte Carlo computer simulation based on a hard-sphere model, and the excellent agreement between observed and calculated volume changes strongly reinforces the notion that they are indicative of the basic mechanisms (entries 486-488). This development is especially important because of the doubts about the existence of truly concerted reactions that have been expressed on many occasions by Firestone. His misgivings have led him to question the high-pressure argument, and to summarize his analysis⁶¹⁰ with the statement: "...the activation and reaction volumes are not useful criteria of the Diels-Alder mechanism." The diradical reactions depicted in entries 489-492 and their modest negative activation volumes are also clear demonstrations of the power of the argument.

The cheletropic reactions of 2,3-dimethylbuta-1,3-diene (entries 493–494) are clearly concerted. 528,529 The formation of the dibromophenylphosphine ion-pair adduct has the very large activation volume of

-60 cm³ mol⁻¹; in that instance, the charge formation leads to additional contraction.⁵²⁹ Just the opposite feature may be the reason that the dipolar cycloadditions of benzyl azide (entries 495–502) are only moderately accelerated by pressure^{530,531} although these reactions are concerted by all other criteria; it seems likely that the disappearance of formal charges during reaction is responsible. From that point of view, the reaction volumes would be informative in these cases.

The photocycloaddition of singlet oxygen to furan and to 1,3-diphenylisobenzofuran (entries 503-508) is accelerated by pressure, 532 which is unsurprising in view of the two newly forming bonds. The solvent effect was interpreted as indicative of a contribution by the solvent viscosity. In the photo reaction of singlet oxygen with tetramethylethylene (entries 509-514), both the large pressure-induced acceleration of the rate and the solvent effect clearly hint at a highly polar intermediate; a Foote perepoxide with $\mu=3.4~\mathrm{D}$ was proposed: 533

Turro's group has been able to measure⁴⁶⁷ the [2+2] photocycloaddition by singlet adamantanone to fumaronitrile. The reaction is only barely affected by pressure, and complicated by the pressure-enhanced intersystem crossing; however, this had the benefit of allowing the measurement of an activation volume for the sensitized olefin isomerization. With some of the steps dependent on the viscosity, and others correlating only with the dielectric constant of the medium, the interpretation is too complex for analysis here, and the original paper should be consulted (entry 515).

The cycloaddition of methyl propynoate to cyclopentene with aluminum chloride catalysis (entry 516)⁵³⁴ reveals a volume decrease in the transition state, which seems rather moderate for the proposed zwitterionic intermediate. A diradical species could be considered. From the point of view of that possibility, it would be interesting to study the stereochemistry of some open-chain olefins.

The several ene reactions studied at high pressure (entries 518-524) are clearly of a concerted nature^{536,537} except in the case of the azo compounds; in that case, the much reduced contraction in the transition state suggests that a diradical mechanism is operating. Sigmatropic shifts (entries 525-535) are subject to moderate pressure acceleration resulting from the assumption of a cyclic conformation; the bond-making and -breaking parts should largely cancel.⁵²⁰ A very nice confirmation comes from a study of the 1,2-divinylcyclobutanes.⁵³⁵ The cis isomer gives 1,5-cyclooctadiene at 70 °C with an activation volume of $-14 \text{ cm}^3 \text{ mol}^{-1}$; by contrast, the trans isomer requires 160 °C before it finally reacts to give a mixture of the cyclooctadiene, 4-vinylcyclohexene and butadiene, the activation volume being about +5 cm³ mol⁻¹ for all three processes. Sugiyama and Takeshita⁵³⁸ found that 1,9- and 1,5-sigmatropic shifts are accelerated by pressure in comparable ways; they also demonstrated that increased hindrance (as in entry 535) increases the contraction. The hydrogen group transfer process⁵³⁹ shown in entry 536 clearly requires the close approach of the Decalin and anthracene molecules: $\Delta V^{\dagger} = -55 \text{ cm}^3 \text{ mol}^{-1}$, in an interesting contrast with the results shown in entries 537–543.⁵⁴⁰

Nishimura et al.^{541–543} have studied the conversion of several zwitterions and the spiroforms depicted in entries 544–560. Both the activation and reaction volumes are positive, as might be expected when neutralization of charge is part of the process. Interestingly, the effect of neutralization is larger than the contraction due to the new bond, but the difference becomes smaller in more polar solvents, as is expected on the basis of the Drude–Nernst formalism: the more polar (and hence self-constricted) solvents are least subject to electrostriction by ionic charges. The decomposition of nitroso dimers (entries 562 and 563) is retarded by pressure, as should be expected from bond cleavage reactions; the disappearance of the formal charges may also have played a role. ^{545,546}

Neuman⁵⁰¹ has contributed further insights into the decomposition of azo compounds (entries 564–569): it is now clear that while one bond breaks initially, diffusion to separate radicals is a critical part of the reaction. This causes the positive activation volumes to be larger than in the case of most single bond scission processes; they contrast with peroxide decomposition⁵⁴⁹ (entries 570–576; no return, early transition states).

Naud and Brower⁵⁵⁰ have conducted a courageous investigation of the decomposition of various explosives under pressure (entries 577–595). The activation volumes are positive in most cases, and the authors postulate N-N bond cleavage as the ratecontrolling step; however, RDX and 6-nitro-1,2-dinitroso-1,2,3,4-tetrahydroquinoxaline have negative activation volumes. Both of these compounds can aromatize by means of E1 elimination (of HNO2 and HNO, respectively), and it may be presumed that they do so. The same mechanism applies to cyclohexyl nitrate. Elimination also drives the thermal decomposition of 2-nitropropane and 2-methyl-2nitropropane. The decay of α radicals derived from crystalline dicarboxylic acids is inhibited⁵⁵⁶ very strongly by pressure, but again, the pressure in such circumstances is at best approximately hydrostatic (entries 596-601).

Solvolysis experiments by Itsuki^{558,559} and others show mostly normal values understandable in terms of Drude—Nernst theory, as explained in our earlier reviews (entries 603–675). Thus, in ethanol, substantially more negative activation volumes are found than in water, as expected from the less polar nature of the alcohol; the *tert*-butyl chloride is more strongly accelerated than the bromide because of the smaller size of the chloride anion. The chloride depicted in entry 614 has an activation volume much more negative than that in entry 613; this was attributed⁵⁶¹ to extended participation (bond formation)

and the preformation of the necessary bicyclic (more crowded) conformation. Kyong's experiments⁵⁶² in generating the 1-adamantyl cation show clearly that at higher temperatures, ΔV^{\dagger} becomes more negative due to the more expanded state of the solvent. The effect of solvent composition is more difficult to account for, as aqueous organic solvents may adopt different structures depending on the water content. The radical ion pair separation processes shown in entries 676-690 were studied by Turro. 565 Pressure was found to inhibit them. This is of course opposite to what is normally expected and found for this type of process. The authors favored the increase in solvent viscosity as the explanation. If the charges are more localized in the ion pair than in the separate ions, that could also account for the pressure effect.

The Menschutkin reaction, long known for its pressure sensitivity, continues to draw the attention of the high-pressure kineticists (entries 691-754). Yoh's group has reported the reactions of variously substituted pyridines in acetonitrile, over a range of temperatures. These authors found that ρ steadily decreases as the pressure is raised, and attributed this fact to the increase in density of the solvent, and hence, to decreased electrostriction (the opposite is true for the phenacyl sulfonates). $^{566-569}$ A comparison with the known pressure effects on the corresponding benzyl sulfonates led the authors to conclude that the former have "more $S_{\rm N}2$ character" in the transition state.

Entries 739–741 show that the same increase in $-\Delta V^{\dagger}$ which results from steric hindrance also obtains from the buttressing of that effect. Entries 742–747 describe the pressure effects for the reaction of various pyridines with phenacyl halides; ⁵⁷³ the most noticeable effects are those of the use of chloride as the leaving group versus that of bromide, and the effect of a hindering o-methyl group. Brower's finding of a very modest pressure acceleration when the substrate already carries a positive charge which becomes delocalized in the transition state is also of interest. ⁵⁷⁵

Jenner⁵⁷⁶ has made a thorough study of the Michael reaction at high pressures (entries 755–763). This reaction resembles the Menschutkin chemistry in that the formation of a new bond and a pair of charges are both expected to contribute to contraction, and the results fully bear this out: values of $-\Delta V^{\dagger}$ as large as 50 cm³ mol⁻¹ or more are commonly encountered. The conversion of esters into amides⁵⁷⁷ and the imidazole-catalyzed hydrolysis of phenyl acetate esters⁵⁷⁸ are standard cases of the contraction always seen in the formation of a tetrahedral intermediate (entries 764-778). The former reaction has acquired synthetic usefulness as it is often sluggish under ambient conditions; the latter was found to have a pressure response strongly dependent on the presence and concentration of sodium bis(2-ethylhexyl)sulfosuccinate micelles. Aggregation of these micelles was postulated to account for this observation.

The reaction of aldehydes with allyltri-*n*-butylstannanes (entries 781–785) has large negative activation volumes consistent with concerted cyclic tran-

sition states as proposed by Isaacs²³⁹ and Yamamoto.⁵⁸⁰ The metathesis reaction of iodine and tetramethylstannane (entries 786–797) is strongly enhanced by pressure, and both the solvent and temperature effects suggest that charge development characterizes the transition state.^{581–583} The isomerization shown in entries 798–805 is consistent with the cleavage of two hydrogen bonds, although an accounting of that sort is hazardous in view of the extensive double-bond relocation that must accompany the reaction.⁵⁸⁴

The reaction of palladium acetate with imines to give the complex structures shown in entries 806-835 all have negative activation volumes as might be expected from the multiple-bond formations taking place. The reactions of imines derived from anilines are accelerated substantially more by pressure than those of N-propyl- and N-benzylimines, which is surely related to the more severe crowding in the transition states. Entries 836-842 show reactions of carbohydrate and their derivatives; most were catalyzed by solids, and although the results show intriguing variations, they can presently not be confidently interpreted.

The acid-catalyzed, base-catalyzed, and uncatalyzed proton exchange processes of the NH proton in *N*-methylacetamide (entries 843–845) furnish an interesting example of the effects of charge and charge delocalization on the volume profile. Simple proton exchange between oxygen and nitrogen (acid catalysis) is essentially unaffected by pressure; base catalysis is retarded because the charge, concentrated in hydroxide, becomes delocalized in the amide anion, and in the "uncatalyzed" reaction (catalyzed by water), charge and bond formation accelerate the process. These results are important in that departures from these values observed in peptides and proteins may furnish information about the physical state of these macromolecules in aqueous solution.

The adenosine phosphate hydrolyses 431 (entries 846-847, already commented on in the section on biological reactions) are further examples of evidence that metaphosphate is not an intermediate in these reactions. 1 The activation volume of the triazine decomposition in chloroform 592 as depicted in entry 848 is surely the result of a proton transfer to N-1 to give an ion pair, followed by—or perhaps concerted with—methyl transfer to oxygen. The importance of the charges becomes clear from the much-reduced value of ΔV^{\ddagger} in acetonitrile (entry 849); the further decomposition of the resulting intermediate to give nitrogen follows in rapid subsequent steps.

The reactions of entries 850 and 851 resemble the Kornblum oxidation of primary halides to aldehydes by dimethyl sulfoxide. ⁵⁹³ In that process, sulfur alkylation occurs in the first step, and that is likely to be the case here, as may be deduced from the substantial negative activation volume and its dependence on the solvent. The very large positive value seen in the fragmentation taking place in entry 852 is surely a reflection of the multiple-bond cleavages, ⁵⁹⁴ although the precise sequence of events in this reaction cannot be deduced from this experiment alone. The ionization of the resorcinol monoanion to

the dianion (entry 853) is expected to be strongly promoted by pressure in view of the concomitant concentration of charge, and this is indeed observed. 595

C. Comments on Table 3

The difference in activation volume between multiple products in the same reaction is simply the difference in partial molar volume of the two transition states. This difference will often simply reflect or resemble the difference in partial molar volume of the products themselves. Thus, the smaller volume will often be that which leads to the more crowded products. For example, in the third entry, the partial molar volume of the less crowded trans adduct is probably larger by several cm³ mol⁻¹ than the cis epimer, and this volume difference is foreshadowed by $V_2^{\dagger} - V_1^{\dagger}$ which has a value of $+5.5 \text{ cm}^3$ mol⁻¹ (it will be understood that differences in initial state must be taken into account when the reactions are not competing but simultaneous, as in entries 13 and 14).

Occasionally, significant information can be derived from such results. In the case of the 1,4-dicyanon-aphthalene-sensitized photo-Diels—Alder reaction of 1,3-cyclohexadiene (entry 7), the identity of the smaller of the endo and exo transition states depends on the solvent: a clear indication that the mechanisms in the two solvents are different. The authors⁶¹² postulate the occurrence of different types of ion pairs in the two solvents. In the case of the two products from 1,3,8-nonatriene (entry 10), the Diels—Alder transition state is smaller than the activated complex of the 1,5-sigmatropic shift; this is surely related at least in part to the larger parachor of the two extra double bonds in the triene product.

D. Comments on Table 4

It has become a fairly routine practice among highpressure kineticists to measure not only volumes of activation but the reaction volumes as well, so that the complete volume profile of the reaction can be drawn; in fact, the individual partial molar volumes of the components are known in many cases. In Table 4, the pressure range and number of measurements are not always recorded as several methods are in use to determine the reaction volume, and not all of them employ pressure. A number of reaction volumes measured as a secondary goal were reported in Table 2; they require no further comment here. This section is devoted to instances in which the reaction volume was the primary objective, or where new methods were used to determine it.

Conway has used the buoyancy—balance method to determine the partial volumes of several organic bases and their conjugate acids in water;⁶²⁰ the resulting ionization volumes are shown in entries 1–16. The electrostriction effect and its increase upon a second protonation are evident. Somsen⁶²¹ has reported the partial volumes of nine polybasic acids in water; some of the results differ substantially from data shown in earlier literature.

Table 3. Activation Volume Differences of Organic Reactions

No.	reaction	solvent	T/ °C	P/MPa	no of ratio data	$\delta \Delta V_0^{\neq}$ /cm ³ mol	ref	remarks
1.	NC exciplex					0		
	s_1 t_1	MeCN	25	203	5	-3.7	467	
2.	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$					0		
	$\stackrel{\cdot}{\int}_{T_1}$ \longrightarrow $\stackrel{\circ}{\downarrow}$	MeCN	25	203	5	+7.4	467	
3. ON Cl ₃ C	OCH ₂ Ph Cl ₃ C O OCH ₂ Ph	CH₂Cl₂	55	550	12	0+5.5	516	
4.						0		
5.	Cl ₃ C O H	CH ₂ Cl ₂	90	250	7	+7.3	514	<i>P</i> ≥ 25
5.	+ exo-					0		
	endo-O	AcOEt	100	1000	4	-3.1 ^a	518	$\delta \Delta V^{\neq}(25 \text{ °C}) = -3.4$

Table 3. (Continued)

No.	reaction	solvent	T/ °C	P/MPa	no of	δΔV,		remarks
6.								_
	COOMe					0		
		CO_2 CO_2	35 45	30 30	5 3	-3.7 -5.9	611 611	At 10 MPa. At 10 MPa.
7.	ĊOOMe							
2 <u>hv</u>	NC—CN					0		
CHD		MeCN MeCN MeCN MeCN PhH PhH	25 25 25 25 25 25 25	203 203 203 203 203 203 203	5 5 5	+2.0 +2.4 +1.6 +1.2 -11.1 -8.7	612 612 612 612 612 612	[CHD] = 0.1 mol dm ⁻³ [CHD] = 0.16 mol dm ⁻³ [CHD] = 0.4 mol dm ⁻³ [CHD] = 1.06 mol dm ⁻³ [CHD] = 0.08 mol dm ⁻³ [CHD] = 0.16 mol dm ⁻³
		PhH PhH PhH	25 25 25	203 203 203	5 -	-8.7 -10.7 -11.6	612 612	[CHD] = 0.16 mol dm ⁻³ [CHD] = 0.4 mol dm ⁻³ [CHD] = 1.0 mol dm ⁻³
8.	HCEC-COOMe COOMe						0	
	COOMe	PhH CH ₂ Cl ₂	ambient ambient	300 300	2 -	+12.5 +12.5	525 525	b c
9. F ₂ C=C=CH ₂ +	Ph D F					0		
	Ph D	none	ambient	1300	6	+2.4 ^a	613	<i>P</i> ≥ 180
	Ph D CF ₂	none	ambient	1300	6	-2.0a	613	<i>P</i> ≥ 180
	CF ₂	none	ambient	1300	6	+0.2 ^a	613	<i>P</i> ≥ 180
10.						0		
		<i>n</i> -hexane	150	770	2	-8.1ª	520, 614	ı
11.	=COOMe AICI3 COOMe					0		
		PhMe	25	900	3	≈0	534	

Table 3. Activation Volume Differences of Organic Reactions

No. reaction	solvent	T/ °C	P/MPa	no of ratio data		ref	remarks
12. Me Me Me Me Me Me Me Me							
2 Me Me Me Me					0		
Me Me Me Me P ₂ 2	n-heptane n-pentadecane	80 80	200 200	5 6		549 549	
13. CH ₂ CH ₂ + H ₂ C=CH ₂ →					0		
$+ \longrightarrow \begin{array}{c}$	none	200	250	3	+5.1	615	<i>P</i> ≥ 150
CH ₂ CH ₂ CH ₂ CHCOO <i>n</i> -Bu							
					0		
H H O Me Me	none	200	250	3	+8.2	616	<i>P</i> ≥ 150
CH₂CH₂CH2CHCOOCH2CH(Et)CH2CH2CH2M€							
MeNO ₂ + Ph (-)-quinine (-)-Ph CH_2COPh CH_2NO_2 CH_2COPh					0		
(+)-Ph——CH ₂ COPh CH ₂ NO ₂	PhMe ar	nbient	1500	4	-0.6	617	$P \ge 400$, d
16. MeNO ₂ + Ph (+)-quinidine CH ₂ COPh (-)-Ph (-)-Ph					0		
COPh CH ₂ NO ₂ CH ₂ COPh	71.16						
CH₂NO₂	PhMe ar	nbient	900	4	+0.3	617	<i>P</i> ≥ 400
17. CH ₂ OAc							
CH ₂ OAC CH ₂ OAC OAC OAC					0		
QAC OAC OAC OAC	CH ₂ Cl ₂ CH ₂ CICH ₂ Cl CH ₂ Cl ₂ -CH ₂ CICH ₂	20 20 20 20 2Cl	1300 300 600	8 3 3	10	618 618 618	CH ₂ Cl ₂ 30%

Table 3. (Continued)

No.	reaction	solvent	T/ °C	P/MPa	no of ratio data	$\delta \Delta V_0^{\neq}$ /cm ³ mol		remarks
18. CH ₂ OAC OAC OAC OAC Me	Ph ₃ CCIO ₄ OMe OCPh ₃							
	CH2OAC CH2OAC OMe					0		
	CH ₂ OAC OAC OAC OAC OAC OAC OAC OME	CH ₂ Cl ₂	20	1400	8	-8.5	619	

 a Calculated by one of the authors (T.A.). b In the presence of AlCl $_3$. For other reactions, see the original. c In the presence of ZrCl $_4$. For other reactions, see the original. d Both the enantiomer excess and the chemical yield increase with increasing pressure.

The application of photothermal and photoacoustic methods 48,51 has made possible the study of volume profiles difficult to obtain with other techniques. For instance, the $E \rightarrow Z$ photoisomerizations of 3,3′-diethyloxadicarbocyanine iodide (entry 26) and the monocarbo analogue (entry 27) have reaction volumes of -29 and ~ 0 cm³ mol $^{-1}$, respectively; if it is assumed that these changes are due to solvation changes, the structures of the products shown can be deduced from the dipole moments calculated for them 53 (see also entries 271-274 of Table 2).

Entries 28-33 resulted from measurements of reaction volumes by means of photoacoustic calorimetry. Two of these values (entries 28 and 32) seem improbably high; the authors ascribed them to the fact that the starting materials have substantially larger dipole moments than the products, and hence would interact more strongly with the solvents.⁶²² Subsequent measurements for diphenylcyclopropenone have averaged at about +24 cm³ mol⁻¹; the reasons for the discrepancy have been discussed by Schmidt.⁶²⁴ An Italian group⁶²⁶ has measured the reaction volume of the photorearrangement of onitrobenzaldehyde to nitrosobenzoate in water as a function of pH; the sign change was attributed to the neutralization of the proton released in the process. Zimmt⁶²⁷ found the reaction volume for the generation of excited singlet tetraphenylethylene to be large and negative, and attributed that result to the strongly dipolar character of this state, with a dipole moment of about 6 D. The relaxation of the zwitterion resulting from the photoexcitation shown in entry 38 in alkanes is characterized by an expansion of 14 cm³ mol⁻¹.628 Similar effects were seen by Braslavsky and co-workers^{56,58} (entries 37 and 39-

The conformational equilibrium for 1,1,2-trichloroethane has been studied by Yamada and Sera, ⁶²⁹ who found the more crowded gauche conformer to be favored by high pressure. Tamura⁶³⁰ has been able to deduce the ionization volumes of a number of highly deactivated anilines, in a study of the Hammett acidity function at high pressure. The trend in the data shows that the effect of the deactivating

groups is to diminish charge delocalization. The 1,7prototropic shift depicted in entries 50-62 was attributed by Nishimura et al.⁶³¹ to the greater ability of the naphthoquinone form to engage the solvent in H bonding, a finding which is in accord also with the more negative values found in the water content of the solvent was raised. The intramolecular hydrogen bonds shown⁶³² to form as in entries 63-69 are about the same as those characterizing external H bonds such as those observed by Schulman⁶³³ (entry 70) for neat methanol at eight temperatures from 5 to 119 °C: 3 cm³ mol⁻¹ of H bonds. The equilibrium between the lactone and zwitterionic froms of rhodamine B in primary alcohol solvents shifts toward the latter under high pressure, 634 the more so the less polar the alcohol; these effects are commonly expected and observed. The negative reaction volumes are rather small, presumably because of the delocalized nature of the charges (which is responsible for the ring opening in the first place). The difference in ΔV between the apparently similar reactions shown in entries 75 and 76 is due to the fact that the latter is intramolecular—the association of two molecules accounts for the major part of the contraction as noted by the authors. 635

The dimerization of nitrosobenzenes causes much larger contractions, since the dimers have local charges associated with the oxygen and nitrogen atoms. 636 The small volume diminutions usually noted for charge-transfer complexation were shown by Kim⁶³⁷ to be somewhat temperature-dependent: the complexes may possibly be somewhat looser at the higher temperatures. The association process of pyridinium iodides amounts to a net neutralization, so that the reaction volumes are positive in that case. 638 The negative reaction volumes for the process shown in entries 102–111 seem very large for simple H bond—and/or charge-transfer complex formation; they appear to be more characteristic of ionpair formation, as the authors⁶³⁹ suggested for the reactions of the quinone with proton sponge (entries 112-115). In fact, amine interactions with hydrogalvinoxyl have reaction volumes so large that free

Table 4. Reaction Volumes of Organic Reactions

No.	reaction	solvent	T/°C	P/MPa		ΔV /cm ³ m	ref ol ⁻¹	remarks
Me	Me + H ⁺ H H H	H ₂ O	25	-	-	-7.1	620	
2. HN	NH + H ⁺ → NH	H ₂ O	25	-	-	-5.6	620	
3. H ₂ N	NH ₂ + H ⁺ → +H ₃ N NH ₂	H ₂ O	25	-	-	-6.6	620	
4.	N + H ⁺ → N N ⁺ -H	Н ₂ О	25	-	-	-6.3	620	
3. —	N + H ⁺	H ₂ O	25	-	-	-4.4	620	
	+ H ⁺ → √N ⁺	H ₂ O	25	-	-	-1.7	620	
NI	N + H ⁺	H ₂ O	25	-	-	-2.3	620	
8. H	I + H ⁺	H ₂ O	25	-	-	-3.9	620	
9. H	+ H ⁺ — N ⁺ H	H ₂ O	25	-	-	-4.3	620	
10.	→ H ⁺ → ∠N [±] → H →	H ₂ O	25	-	-	-3.5	620	
11.	NH + H+ → O N+	H ₂ O	25	-	-	-7.3	620	
12.	NH + H ⁺ →	H ₂ O	25	-	<u></u>	-2.2	620	
13.	N + H ⁺	H ₂ O	25	-	-	-4.5	620	
	N+ H+ H+ Me N+ N+ M+ H H H	H ₂ O	25	-	-	-15.9	620	
15. H	NH + H ⁺ → H + H + H	H ₂ O	25	-	-	-13.4	620	
16. +H ₃ N	NH ₂ + H ⁺ → +H ₃ N NH ₃ ⁺	H ₂ O	25		-	-11.8	620	
	COOH + H+	H ₂ O	25	-	-	-7.5	621	
COOH	H COOH + H+	H ₂ O	25	-		-6.6	621	

Table 4. (Continued)

No. reaction	solvent	<i>T</i> / °C	P/MPa	no of K data	ΔV /cm ³ m	ref ol ⁻¹	remarks
19.HOOC COOH + H+	H ₂ O	25	-	-	-8.0	621	
20.H00C COOH	H ₂ O	25	-	-	-23.0	621	
21.HOOC COOH HOOC COO+ H+	H ₂ O	25	-	-	-7.3	621	
COOH COO- + H+							
22. СООН СООН НО СОО-	H ₂ O	25	-	-	-5.5	621	
23. COOH + H+	H ₂ O	25	-	-	-6.0	621	
HO COOH + H+ + + + + + + + + + + + + + + + +	H ₂ O	25	-	-	-12.0	621	
0H OOC COOH HOOC COOH + H+	H ₂ O	25	-	-	-14.8	621	
hv hv							
26. Et I	H ₂ O	6-25	-	-	-29	53	
27. Et 1+ hv hv hv hv Et 1+	H ₂ O	6-25	-	-	≈0	53	
Ph							
28. PK 29. 30. 31.	MeCN alkanes alkanes n-heptane	ambient ambient ambient ambient	-	- - -	+60.1 +23 +22.3 +23.6	622 623 624 625	
$\frac{1}{32}$. $\frac{hv}{N}$ $\frac{hv}{N}$ $+ N_2$	MeCN	ambient	-	-	+48.5	622	
33. hv hv	MeCN	ambient-	<u>-</u>	+5.6		622	
CHO COO" + H*	MICH	amoient-		15.0		022	
34. NO ₂ NO	H ₂ O	3.9	-	-	-52	626	pH < 9.5.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H ₂ O	3.9	-	-	+24.5	626	pH < 9.5.

Table 4. (Continued)

No.	reaction	solvent	<i>T</i> / °C	P/MPa	no of <i>K</i> data	ΔV /cm ³ mol	ref	remarks
Ph-N	hv TICT-complex ^a	alkanes	20	-	-	-40	56	
MeC	COOMe S ₀ state							
38.~	SO ₃ H	alkanes	20	-	-	+14	628	
HO₃S—	SO ₃ H hv T ₁	state						
39.	SO₃H	D ₂ O	22	-	-	-10	58	pH 7.8.
40. Me ₂ N'	N S N	D ₂ O	22	-	-	-1.5	58	рН 7.8.
	CI COONa hv T ₁ state							
NaO 41.		D ₂ O	22	-	-	+1	58	pH 7.8.
H CI CI 42. H CI H	CI CI CI	neat	45	320	12	-3.9	629	With 10 mol% cyclopentane.
O ₂ N-√($NH_3^+ \longrightarrow O_2N \longrightarrow NH_2 + H^+$ NO_2	aq H ₂ SO ₄	25	150	6	+5.5	630	
44.	NO_2 NO_2 NO_2 NO_2 NO_2 NO_2	aq H ₂ SO ₄	25	150	6	+7.8	630	
45. C⊢√	NO_2 NO_2 NO_3^+ NO_2 NO_2 NO_2 NO_2	aq H ₂ SO ₄	25	150	6	+11.3	630	
O₂N— 46.	$NH_2Ph^+ \longrightarrow O_2N \longrightarrow NHPh + H^+$	aq H ₂ SO ₄	25	150	6	+15.8	630	
O ₂ N—√	CI	aq H ₂ SO ₄	25	150	6	+14.2	630	
0_2N-	NO_2 NO_2 NO_2 NO_2 NO_2 NO_2 NO_2	aq H ₂ SO ₄	25	150	6	+13.7	630	

Table 4. (Continued)

No.	reaction	solvent	T/ °C	P/MPa	no of K data	ΔV /cm ³ mol	ref	remarks
N	O_2 NO_2							
	$-NH_3^+$ \longrightarrow $NH_2 + H^+$							
	O_2 NO_2	aq H_2SO_4	25	150	6	+21.0	630	
\Diamond	OH O							
	Г ТІ N N N N Н Ph Ph							
50. 51.	Ph Ph	EtOH aq EtOH	25 25	98 118	4 4	-2.3 -3.0	631 631	EtOH 80 v%.
52. 53.		aq EtOH aq EtOH	25 25 25 25 25 25 25 25 25 25 25 25 25 2	118 118	4 4	-3.4 -4.8	631 631	EtOH 70 v%. EtOH 60 v%
54. 55.		aq EtOH aq EtOH	25 25	118 118	4 4	-5.2 -6.4	631 631	EtOH 50 v% EtOH 40 v%.
56. 57.		aq acetone aq acetone	25 25	98 98	4	-2.3 -3.4	631 631	acetone 95 v% acetone 90 v%
58. 59.		aq acetone aq acetone	25 25	98 98	4 4	-4.0 -4.8	631 631	acetone 80 v% acetone 70 v%
60.		aq acetone aq acetone	25 25	98 98 98	4 4	-5.0 -5.8	631 631	acetone 60 v% acetone 50 v%
61. 62.		aq acetone	25	98	4	-6.8	631	acetone 40 v%
Mar O	OHMe O'HO Me							
63. ^{Me}	Me Me Me Me	CCI ₄ CS ₂	25 25	107 128	-	-4.0 -3.9	632 632	
Q	0.H.O	2						
65. Me	OH Me	CCl₄	25	107	_	-1.7	632	
66.		CS ₂	25	128	-	-3.0	632	
O I	.Me Q+							
Me	OH Me O							
67.	М́е	CCl ₄	25	107	-	-2.2	632	
ПО () _{Ma} — Q ^{H.} .0							
68.	Me	CCl ₄	25	107	-	-3.1	632	
o II	ОH ОН Д О							
Me	Me Me Me	CCI	25	107		-3.7	632	
07.		CCl ₄	25	107	-			
	H → tetramer	neat	5-119	103	6	-11	633	
Et ₂ N.	NEt ₂ Et ₂ N O NI	Et ₂						
	, coo.							
71.		МеОН	25	88	4	-4.2	634	
72.		EtOH	25 25	88	4	-4.7	634	
73. 74.		n-PrOH n-PentOH	25 25	88 88	4 4	-6.1 -12.2	634 634	
Br	BrCl							
\/	H O CI OHCI							
75.H C	н н	DMSO/CDCl ₃	29	200	3	-3.2	635	DMSO 20 wt%
O II	7. 2.4							
76.Me	CN + PhCH ₂ SH	CDC13	30	114	6	-13.0	635	
	ρι - Q C							
2 C⊢≺	$NO \rightarrow C \rightarrow N^{\dagger} \rightarrow CI$							
77.		CCl ₄	25	123	6	-20.7	636	

Table 4. (Continued)

No.	reaction	solvent	<i>T/</i> °C	P/MPa	no of <i>K</i> data	ΔV /cm ³ mol-	ref	remarks
2 Br— 78.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Br CCI ₄	25	123	6	-18.9	636	
	Me MeQ		25	120	· ·	10.5		
2Me— 79.	Me Me OMe	CCI ₄	25	123	6	-22.7	636	
2 80.	CI NO NO NO NO NO NO NO NO	CCl ₄	25	123	6	-16.9	636	
2 81.	Br NO Br O Br	CCl ₄	25	123	6	-17.2	636	
2 82.	Me NO	CCl ₄	25	123	6	-20.0	636	
Me ₆ (1)		sfer complex CCl ₄	25	140	5	-6.5	637	
84. 85.		CCl ₄ CCl ₄	40 50	140 140	5 5	-5.7 -4.4	637 637	
86.	+-Me + I [*]	mplex aq EtOH	25	200	5	-0.9 ^b	638	EtOH 95 v%. $\ln k - P$ plot concave up.
87.		aq EtOH	30	200	5	-0.8 ^b	638	EtOH 95 v%. ln <i>k - P</i> plot concave up.
88.		aq EtOH	35	200	5	-1.1 ^b	638	EtOH 95 v%. ln k - P plot concave up.
89.		aq EtOH	40	200	5	-1.4 ^b	638	EtOH 95 v%. $\ln k - P$ plot concave up.
Me— 90.	N ⁺ -Me + I ⁻ → Charge-transf	er complex aq EtOH	25	200	5	-2.8 ^b	638	EtOH 95 v%. $\ln k - P$ plot concave up.
91.		aq EtOH	30	200	5	-3.1 ^b	638	EtOH 95 v%. ln k - P plot concave up.
92.		aq EtOH	35	200	5	-2.3b	638	EtOH 95 v%. ln k - P plot concave up.
93.		aq EtOH	40	200	5	-2.5 ^b	638	EtOH 95 v%. $\ln k - P$ plot concave up.
NC(94.	N ⁺ -Me + I ⁻ → Charge-transfe	er complex	25	200	5	-4.8 ^b	638	EtOL 05 11년
94.		aq EtOH	25	200	5			EtOH 95 v%.
		an EtOH	30	200	.5	-5.80	638	EtOH 95 v%
95. 96.		aq EtOH aq EtOH	30 35	200 200	5 5	-5.8 ^b -4.5 ^b	638 638	EtOH 95 v%. EtOH 95 v%.

Table 4. (Continued)

No.	reaction		solvent	<i>T</i> / °C	P/MPa	no of <i>K</i> data	ΔV /cm ³ mol	ref	remarks
H ₂ N—	N+-Me + I -	Charge-transfer complex							
98.		,	aq EtOH	25	200	5	-6.0 ^b	638	EtOH 95 v%.
99.			aq EtOH	30	200	5	-5.5 ^b	638	EtOH 95 v%.
00.			aq EtOH	35	200	5	-6.4 ^b	638	EtOH 95 v%.
01.			aq EtOH	40	200	5	-5.5 ^b	638	EtOH 95 v%.
HO Br	Br Br O + COOEt	Et ₃ N — Charge-transfer comp	olex						
02			CHC	25			22.2	639	
02.	Ť		CHCl ₃ PhMe	25 25	-	-	-23.2 -24.9	639	
03. 04.			1,4-dioxane	25 25	-	-	-22.3	639	
HOBr	Br Br O +	n-Pr₂NH ———➤ Charge-transfer co	mplex						
	COOE		DI CI	2.5			21.1	(20	
05. 06.	~	C	PhCl CH ₂ ClCH ₂ Cl	25 25	-	-	-31.1 -35.3	639 639	
07.		`	1,4-dioxane	25	-	-	-23.1	639	
HOBr	Br Br COOEt	+ n-PrNH ₂ —— Charge-transfer	complex						
08.			PhH	25	-	_	-31.5	639	
09.			PhCl	25 25 25	-	-	-31.5	639	
10. 11.		(CH ₂ ClCH ₂ Cl 1,4-dioxane	25 25	-	-	-34.8 -31.9	639 639	
HO Br 12. 13. 14. 15.	Br Br COOEt	+ NEt ₂ NEt ₂ ion pair	PhH PhMe CHCl ₃ n-BuCl	25 25 25 25 25		- - -	-35.4 -35.8 -38.5 -30.7	639 639 639 639	
Me Me	Me M	+ Et₃N ——➤ ion pair							
16.	Me	+ Et ₂ NCH ₂ CH ₂ OH → ion pa	MeCN	25	82	4	-40.7	640	
17.		+ Me ₂ NCH ₂ CH ₂ OH → ion pa	·	25	73	5	-40.8	640	
18.		+ /r-Pr ₂ NH ion pair	1110011	25	73	5	-34.2	640	
19.			MeCN	25	73	5	-38.2	640	
20.		+ #BuNH ₂ ion pair	MeCN	25	73	5	-35.4	640	
		+ n-PrNH ₂ → ion pair	MeCN	25	73	5	-44.4	640	
		+ n-BuNH ₂ ion pair	MeCN	25	73	5	-42.9	640	
21. 22.	$\overline{}$								
21. 22.	+ NaCl	Complex							
21. 22.	٥, ا	·	МеОН	25?	-	-	+14	641	
21.	-0 + Nal -	Complex	МеОН МеОН	25? 25?	- -	-	+14 +15	641	
21. 22.	٥, ا	Complex Complex			- - -				

Table 4. (Continued)

	reaction	solvent	T/ °C	P/MPa		ΔV /cm ³ mol	ref	remarks
127.	+ Nal —— Complex	MeCN	25?	-	_	+21	641	
128.	+ KI Complex	MeCN	25?	-	-	+13	641	
129.	+ Csl — Complex	MeCN	25?	-	-	-13	641	
	^o^							
~ ✓ o	φ ~~							
	+ Nal — Complex							
~ o	0 \							
130.	_0	MeOH	25?	-	-	+19	641	
131.	+ KI —— Complex	MeOH	25?	-	-	+12	641	
132.	+ Csl — Complex	МеОН	25?	-	-	+8	641	
133.	+ Nal ──── Complex + KI ─── Complex	MeCN	25?	-	-	+19	641	
134.	+ KI —— Complex + CsI —— Complex	MeCN McCN	25?	-	-	+12	641	
135. 136.	+ Nal — Complex	MeCN DMSO	25? 25?	-	-	+16 -9	641 641	
137.	+ KI —— Complex	DMSO	25?	-	-	-13	641	
138.	+ Csl Complex	DMSO	25?	-	_	+10	641	
.20.	~ o <i>^</i>	2						
	O + Nal - Complex							
130		McCN	25?			±25	641	
139. 140.	+ KI — Complex	MeCN MeCN	25? 25?	-	-	+25 +22	641	
140. 141.	+ Csl → Complex	MeCN	25?	-	_	+17	641	
142.	+ Nal ──► Complex	DMSO	25?	-	_	+4	641	
143.	+ KI —— Complex	DMSO	25?	-	_	+2	641	
144.	+ Csl —— Complex	DMSO	25?	-	-	-3	641	
145. 146.	+ KCI —— Complex	МеОН МеОН	25? 25?	-	- -	+15 +13	641 641	
	+ CsCl — Complex	МеОН	25?	_	_	+10	641	
	· · · · · · · · · · · · · · · · · · ·	1110011	·					
	+ Nal → Complex		259	_	_	+16	641	
148.	+ Nal	MeOH	25? 25?	-	-	+16 +13	641 641	
148. 149.			25? 25? 25?	-	- - -	+16 +13 +10	641 641 641	
148. 149. 150.	+ KI —— Complex + Csl —— Complex + Nal —— Complex	МеОН МеОН	25?	- - -	-	+13	641	
148. 149. 150.	+ KI — Complex + Csl — Complex + Nal — Complex + KI — Complex	MeOH MeOH MeOH	25? 25?	- - - -	-	+13 +10	641 641 641 641	
148. 149. 150. 151. 152.	+ KI — Complex + Csl — Complex + Nal — Complex + KI — Complex + Csl — Complex	MeOH MeOH MeOH MeCN MeCN MeCN	25? 25? 25? 25? 25?	- - - -	- - - -	+13 +10 +25 +16 +11	641 641 641 641	
148. 149. 150. 151. 152. 53.	+ KI	MeOH MeOH MeOH MeCN MeCN MeCN DMSO	25? 25? 25? 25? 25? 25? 25?	- - -	- - - -	+13 +10 +25 +16 +11 +2	641 641 641 641 641	
48. 49. 50. 51. 52. 53. 54. 55.	+ KI	MeOH MeOH MeOH MeCN MeCN MeCN DMSO DMSO	25? 25? 25? 25? 25? 25? 25? 25?	- - - -	- - - - -	+13 +10 +25 +16 +11 +2 +1	641 641 641 641 641 641	
148. 149. 150. 151. 152. 153. 154.	+ KI	MeOH MeOH MeOH MeCN MeCN MeCN DMSO	25? 25? 25? 25? 25? 25? 25?	- - -	- - - -	+13 +10 +25 +16 +11 +2	641 641 641 641 641	
147. 148. 149. 150. 151. 152. 153. 154. 155. 156.	+ KI — Complex + Csl — Complex + Nal — Complex + KI — Complex + Csl — Complex + Nal — Complex + KI — Complex + KI — Complex + KI — Complex + KI — Complex	MeOH MeOH MeOH MeCN MeCN MeCN DMSO DMSO	25? 25? 25? 25? 25? 25? 25? 25?	- - - -	- - - - -	+13 +10 +25 +16 +11 +2 +1	641 641 641 641 641 641	
148. 149. 150. 151. 152. 153. 154. 155. 156.	+ KI — Complex + Csl — Complex + Nal — Complex + KI — Complex + Csl — Complex + Nal — Complex + Nal — Complex + KI — Complex + KI — Complex - Complex - Complex	MeOH MeOH MeOH MeCN MeCN MeCN DMSO DMSO	25? 25? 25? 25? 25? 25? 25? 25?	- - - -	- - - - -	+13 +10 +25 +16 +11 +2 +1	641 641 641 641 641 641 641	
148. 149. 150. 151. 152. 153. 154. 155. 156. Me Me Me Me Ne	+ KI — Complex + Csl — Complex + Nal — Complex + KI — Complex + Csl — Complex + Nal — Complex + KI — Complex + KI — Complex + KI — Complex + KI — Complex	MeOH MeOH MeCH MeCN MeCN DMSO DMSO DMSO	25? 25? 25? 25? 25? 25? 25? 25? 25?	-	-	+13 +10 +25 +16 +11 +2 +1 +3	641 641 641 641 641 641 641	
148. 149. 150. 151. 152. 153. 154. 155. 156.	+ KI — Complex + Csl — Complex + Nal — Complex + KI — Complex + Csl — Complex + Nal — Complex + Nal — Complex + KI — Complex + KI — Complex + KI — Complex + KI — Complex + Hydrogen-bonded complex	MeOH MeOH MeCH MeCN MeCN DMSO DMSO DMSO	25? 25? 25? 25? 25? 25? 25? 25? 25?	-	-	+13 +10 +25 +16 +11 +2 +1 +3	641 641 641 641 641 641 641	
148. 149. 150. 151. 152. 153. 154. 155. 156. Me Me M	+ KI — Complex + Csl — Complex + Nal — Complex + KI — Complex + Csl — Complex + Nal — Complex + Nal — Complex + KI — Complex + KI — Complex + KI — Complex + Hydrogen-bonded complex - Complex - C	MeOH MeOH MeCN MeCN MeCN DMSO DMSO DMSO MeOH	25? 25? 25? 25? 25? 25? 25? 25? 33.5	150	4	+13 +10 +25 +16 +11 +2 +1 +3	641 641 641 641 641 641 642	A.B. 22
148. 149. 150. 151. 152. 153. 154. 155. 156. Me Me M	+ KI — Complex + Csl — Complex + Nal — Complex + KI — Complex + Csl — Complex + Nal — Complex + Nal — Complex + KI — Complex + KI — Complex + KI — Complex + KI — Complex + Hydrogen-bonded complex	MeOH MeOH MeCN MeCN MeCN DMSO DMSO DMSO DMSO MeOH	25? 25? 25? 25? 25? 25? 25? 25? 33.5	150	4	+13 +10 +25 +16 +11 +2 +1 +3 -4.2	641 641 641 641 641 641 642 643	At $P > 80$
148. 149. 150. 151. 152. 153. 154. 155. 156. Me Me M	+ KI — Complex + Csl — Complex + Nal — Complex + KI — Complex + Csl — Complex + Nal — Complex + Nal — Complex + KI — Complex + KI — Complex + KI — Complex + Hydrogen-bonded complex - Complex - C	MeOH MeOH MeCN MeCN MeCN DMSO DMSO DMSO MeOH	25? 25? 25? 25? 25? 25? 25? 25? 33.5	150	4	+13 +10 +25 +16 +11 +2 +1 +3	641 641 641 641 641 641 642	At P > 80 $At P < 70$
148. 149. 150. 151. 152. 153. 154. 155. 156. Me Me Me Me Me Me Me	+ KI — Complex + Csl — Complex + Nal — Complex + KI — Complex + Csl — Complex + Nal — Complex + KI — Complex + KI — Complex + KI — Complex + KI — Complex + Csl — Complex - Hydrogen-bonded complex O + β-cyclodextrin — Inclusion complex NO • + β-cyclodextrin — Me Me Me Me Me Me Me Me	MeOH MeOH MeCN MeCN MeCN DMSO DMSO DMSO DMSO MeOH	25? 25? 25? 25? 25? 25? 25? 25? 33.5	150	4	+13 +10 +25 +16 +11 +2 +1 +3 -4.2	641 641 641 641 641 641 642 643	

Table 4. (Continued)

No. reaction	solvent	<i>T/</i> °C	P/MPa	no of K data	ΔV /cm ³ mo	ref -1	remarks
163.	ethane	40	45	9	-47.8	645	X _{MeOD} 0.062
164.	ethane	40	-	_	-32.9	645	X_{MeOD} 0.031
165.4 MeOD → tetramer	CO_2	40	45	8	-79.2	645	X _{MeOD} 0.062
166.	CO_2^2	40	-	-	-65.9	645	X _{MeOD} 0.031
167.	ethane	40	45	9	-62.2	645	X _{MeOD} 0.062
168.	ethane	40	-	-	-42.3	645	$X_{MeOD} 0.031$
169.	heptane	40	45	6	-6.9	645	X_{MeOD} 0.062
170.	heptane	40	-	-	-13.7	645	X _{MeOD} 0.031
171.5 MeOD → pentamer	CO_2	40	45	8	-96.2	645	X _{MeOD} 0.062
172.	CO_2	40	-	-	-76.9	645	X _{MeOD} 0.031
173.	ethane	40	45	9	-76.8	645	X_{MeOD} 0.062
174.	ethane	40	-	-	-51.5	645	$X_{MeOD} 0.031$
OH NO							
175. H	CHF ₂ CH ₃	130	21	17	-1400 ^c	646	$\Delta V \approx 0$ at 20
176.	propane	120	21	13	-900c	646	$\Delta V \approx 0$ at 20 MI

- a. Twisted intramolecular charge-transfer complex.
- b. Calculated by one of the present authors (T.A.).
- c. At the maximum compressibility of the fluid.

ions seem likely to be formed; ion association would be highly hindered. 640

Letcher and Kay⁶⁴¹ have reported an extensive set of volume data on the complexation of alkali halide salts with crown ethers and cryptands in various solvents. In most instances, simple trends can be discerned and understood. Thus, most of the reaction volumes are positive, which is the result of the desolvation of the cations which is necessary before binding can take place. For this reason, the expansion is generally least for the heavier alkali metals. In dimethyl sulfoxide, complexation does not offer much advantage over solvation, and it probably does not occur. It also appears that the cesium cation is too large to form a complex with 15-crown-5, but the negative value in acetonitrile suggests that it may bind two crown molecules; on the other hand, it is not obvious why the values for sodium and potassium iodides with dicyclohexyl-18-crown-6 in dimethyl sulfoxide should be negative while that for cesium iodide is positive. Yamada and Sera⁶⁴² made a highpressure NMR study of the interaction of tert-butylammonium perchlorate with 1,3-xylyl-18-crown-5 in methanol; they interpret the negative value of the reaction volume as indicative of a cation strongly hydrogen-bonded to three oxygen atoms at one face of the crown. High-pressure ESR was used by Sueishi et al.643 to evaluate the inclusion of di-tertbutyl nitroxide in β -cyclodextrin; they find that water can be packed in the cavity more efficiently than the solute.

There are a few cases in which the reaction volume was measured in supercritical media. Nakahara 644 found that in carbon dioxide, a normal value of $-33\,$ cm 3 mol $^{-1}$ applies to the dimerization of 2-methyl-2-nitrosopropane at high pressure, but this changes to about $+1000\,$ cm 3 mol $^{-1}$ near the critical density. Smith 645 studied the association of methanol and

found negative values for the volume change per H bond far larger than normal if the medium is supercritical carbon dioxide or ethane. Similarly, large contractions were reported for the isomerization of 2-hydroxypyridine in supercritical propane and 1,1-difluoroethane, in an excellent paper by Johnston. 646 This phenomenon is further discussed below.

This section may close with a few related observations in micellar phenomena, not all of which resulted in volume measurements but which are certainly of interest. The association of ions of like charge increases electrostriction and that of ions of opposite charge diminishes it; hence it is not obvious what the volume consequence of micellization will be. Positive values of 5-10 cm³ mol⁻¹ are in fact found for alkanesulfonate, alkanoate, and ammonium salts. 647 In a number of instances, $^{648-650}$ the critical micelle concentration reached a maximum at a pressure of 100 to 130 MPa. Papers by Sugihara⁶⁵¹ and Yamanaka⁶⁵² should also be consulted. Additional observations of interest to high-pressure afficionada's have been reported on conformational equilibria in proteins, 653 on electrochemistry, 654 and on polymerization at constant volume. 655

E. Other Pressure Effects

In this section we discuss several projects that have produced information on molar volumes, volume changes, and volume differences but which for one reason or another were not readily incorporated in Tables 2-4.

The commercialization of extraction by means of supercritical carbon dioxide has sparked a great deal of interest in chemistry in such media. Knowledge of the volume behavior of stable solutes under such conditions will obviously be important in understanding the variation of rates in such media. Eckert⁶⁵⁵

has developed a new and precise protocol to measure partial molar volumes of solutes in the critical region; data were provided for naphthalene, carbon tetrabromide, and camphor in carbon dioxide and ethylene. His results show extreme variability in the partial volume of solutes; values of many liters per mole are observed near the critical point of the solvent. Thus, one may expect that under these conditions, activation and reaction volumes will be large and difficult to interpret: the lion's share of these volume differences will be due to solution compressibilities, and not to changes in bonding. Measurements of the complete volume profiles will be helpful in understanding the results. While several authors have reported activation volumes in supercritical solvents, it should be noted that they cannot be directly compared with the ΔV^{\dagger} values discussed earlier because they cannot be extrapolated to zero pressure.

Several Diels-Alder reactions have been studied in supercritical media. Paulitis⁶⁵⁶ studied the cycloaddition of maleic anhydride and isoprene in carbon dioxide, and found that the activation volume resembles that in the liquid phase at pressures of ca. 10 MPa, but drops steeply to far more negative values near the critical pressure of 72.8 atm. Ikushima et al.657 reported work on the same reaction, with methyl acrylate as the dienophile; these workers also found a deep minimum in ΔV^{\dagger} , of 750 cm³ mol⁻¹ at 7.5 MPa. As important, the product distribution was also strongly affected; the ratio of 4- to 5-carbomethoxy-1-methylcyclohexene, which is about 200 at atmospheric pressure, is reduced to 0.6 at the critical pressure and then returns to about 7 at 20 MPa. Similar findings were reported by Tester;658 in contrast, Isaacs⁶⁵⁹ found no unusual behavior for the reaction of quinine with cyclopentadiene.

In other reactions, Johnston⁶⁶⁰ reported the unimolecular decomposition of α-chlorobenzyl methyl ether in 1,1-difluoroethane; this is an example of a more polar reaction. In this case also, a deep minimum is seen at the critical pressure. Extreme variations are also seen in the data on cyclohexane oxidation gathered by Mukhopadhyay;661 very large positive activation volumes were encountered by Klein⁶⁶² in the pyrolysis of benzyl phenyl ether and dibenzyl ether, as well as extreme negative values for the hydrolysis of dibenzyl ether, phenethyl phenyl ether, and guaiacol. The effect of using supercritical fluoroform as a medium on the enantioselectivity of protease enzymes has been reported by Russell. 663 The acid-catalyzed elimination of water from 1-propanol at 375 °C also shows large variations in ΔV^{\dagger} near water's critical point,⁶⁶⁴ falling from 1200 cm³ mol^{−1} to 70 at much higher pressures. A very recent study of electron attachment to NO in supercritical ethane indicates that activation volumes for this reaction approach $-30 \text{ dm}^3 \text{ mol}^{-1}$ near critical conditions.665

What the available data seem to say is that the extreme behavior occurs near the critical point, and returns to more normal at temperatures well above the critical. Thus, Brower has reported the thermal decomposition of simple nitro compounds at temper-

atures and pressures well beyond the critical values, and conventional interpretations suffice. The reaction of nitromethane 666 was found to have an activation volume of -85 cm 3 mol $^{-1}$ throughout the pressure range of 25-125 MPa, in accord with a simple polar mechanism. Nitrobenzene 667 reacts in benzene by hydrogen abstraction, as was deduced from the main product (fully deuterated biphenyl if hexadeuteriobenzene was used) and from the activation volume of -46 cm 3 mol $^{-1}$. Several other aromatic nitro compounds react analogously; when the nitro group is *ortho* to a methyl group, intramolecular abstraction also occurs.

Supercritical conditions have also been employed in the realm of fast reactions. Johnston has reported⁶⁶⁸ modest changes in the product ratios in the photodimerization of isophorone (three dimers form) at high pressures of carbon dioxide and fluoroform. Randolph⁶⁶⁹ has studied the spin exchange of the ditert-butyl nitroxide radical in ethane; at 35 °C and 4 MPa, the activation volume reaches a maximum of 7500 cm³ mol⁻¹. Eckert⁶⁷⁰ has measured the activation volume of formation of the exciplex of naphthalene with triethylamine in carbon dioxide; he finds that $-\Delta V^{\dagger}$ has a maximum of 14 000 cm³ mol⁻¹ at 8 MPa. A much reduced maximum (2500 cm³ mol⁻¹) is observed at 50 °C. A similar extremum was observed by Brennecke and Chateauneuf⁶⁷¹ in the photoreduction of triplet benzophenone by 2-propanol in carbon dioxide near its critical point; the same behavior is seen with ethane and fluoroform media. 672 When pulse radiolysis is used to generate benzhydryl cation, its capture by tetramethylethylene or triethylamine in fluoroform and ethane is again subject to large rate effects near the critical points.⁶⁷³

True has reported the activation volumes for several inversion processes by means of a method resembling a protocol developed by one of the present authors:674 measurement of the rate constant of a nonpolar unimolecular process both in the gas phase and in solution can be used to calculate ΔV^{\dagger} without the need for high-pressure experiments. It is assumed that the reactant molecules in the solution are subject to a pressure equal to the internal pressure P_i of the solvent; this quantity can be calculated from the compressibility and the coefficient of thermal expansion. $True^{675}$ measured the rate of inversion of 1,3,5-trimethylhexahydro-1,3,5-triazine in the gas phase from ¹H NMR line-shape changes as a function of the pressure of added sulfur hexafluoride, and calculated an activation volume of $+1 \text{ cm}^3 \text{ mol}^{-1}$ by comparing it with the rate in deuteriochloroform; this solvent was assumed to have an internal pressure of 500 MPa. The positive value was attributed to the need for nitrogen inversion to accompany the conformation change of the ring. Similar experiments with cyclohexane, 676 tetrahydropyran, 677 cyclohexyl fluoride, 678 *N*, *N*-dimethylpiperazine, 679 and *N*-methylmorpholine 680 were also reported (-4, -5, -8, +4, and $-9 \text{ cm}^3 \text{ mol}^{-1}$, respectively). If these results can be confirmed by direct high-pressure measurements, this would greatly strengthen confidence in the methodology. A somewhat related experiment has been reported by Kiselev and Konovalov.⁶⁸¹ These

authors measured the rate of the Diels-Alder cycloaddition in a number of solvents including lithium perchlorate solutions in diethyl ether, calculated a ΔV^{\dagger} value on the basis of the alleged internal pressures of these media, and compared it with the value derived from high-pressure measurements in acetonitrile. The results were -22 and -18 cm³ mol⁻¹, respectively. Although the agreement seems impressive, some reservation is in order in this case. Both values are suspiciously low; it is furthermore doubtful that the method can be applied to reactions involving electrolytes at any stage or in any role. Dailey's contention⁶⁸² that the role of the lithium salt is not to augment the internal pressure of the medium⁶⁸³ but to serve as a Lewis acid catalyst (not mentioned by the authors) has not been refuted.

F. Viscosity Dependence of Reaction Rates

The results of most of the reactions portrayed in Tables 2–4 can be discussed adequately in terms of TST, which assumes that equilibrium prevails between the initial state and the activated complex. However, especially the advent of means to study low-barrier reactions and reactions in slowly relaxing media has emphasized the need for alternative theories in which this assumption is avoided. This section is devoted to that need.

a. Description of Medium Effects in Terms of Stochastic Dynamics

Recent developments in the theory of chemical reactions are strongly focused on elementary processes proceeding in condensed phases; they include studies of solvation effects on chemical kinetics as an essential ingredient. The emphasis is on possible deviations of observed kinetics from predictions based on traditional TST. It is now conventional to discuss dynamic solvent effects in terms of friction created by the solute environment. The simplest dynamical equations containing friction forces are (GRF = Gaussian random force)

one-dimensional generalized Langevin equation

$$m\ddot{x} + \int_0^t \xi(t-\tau)\dot{x}(t) d\tau + \frac{\partial U}{\partial x} = GRF$$
 (1)

Langevin or Kramers equation

$$m\ddot{x} + \gamma \dot{x} + \frac{\partial U(x)}{\partial x} = GRF$$
 (2)

the simplest two-dimensional stochastic dynamical equation without memory effects

$$m\ddot{x} + \frac{\partial U(x,y)}{\partial x} = 0$$

$$\gamma \dot{y} + \frac{\partial U(x, y)}{\partial y} = GRF \tag{3}$$

Agmon-Hopfield equation

$$\frac{\partial F}{\partial t}$$
 = diffusion term – sink term

diffusion term =
$$D \frac{\partial^2 F}{\partial y^2} + \frac{D}{k_{\rm B} T} \frac{\partial}{\partial y} \left(F \frac{\partial U(y)}{\partial y} \right)$$
 (4)
sink term = $v(y)F$

Dynamical variables (coordinates) *x* and *y* are associated with a reactive chemical system (reaction coordinate x) and collective medium motion (medium mode *y*); the dots represent time derivatives ($\dot{x} = dx/dx$ dt, etc.). The acceleration term with \ddot{y} is disregarded in second eq 3. Potentials governing dynamic behavior are U(x), U(y) (one-dimensional), and U(x,y)(two-dimensional). In the context of condensed phase kinetics, they are referred to as free energy profiles or surfaces. Stochastic elements are brought in eqs 1−3 by GRFs together with dissipative terms proportional to velocities *x* or *y*. Equations 1 and 2 differ by their dissipative terms; in eq 1 this term contains an integral of $\dot{x}(t)$. At any given instant t, the dynamics of the system *x* is governed by its evolution over the preceding time interval (0,t). Equation 1 is, therefore, often referred to as a stochastic equation with memory, and the corresponding integral kernel $\xi(t-\tau)$ as the memory kernel. Equation 2 is a special case of eq 1 with kernel $\xi(t-\tau) = \gamma \delta(t-\tau)$ where $\delta(t-\tau)$ $-\tau$) means Dirac delta function. It does not involve memory effects. The number γ is called the friction

For chemically reactive systems the free energy surfaces represent a pair of spatially resolved regions (reactants and products) separated by an energy barrier. They are usually treated as double-well functions. Equation 2 with a double-well potential is called Kramers equation. Equation 3 is more general than eq 4 and can be reduced to it when time scales associated with chemical (τ_x) and medium (τ_y) variables obey the inequality:

$$\tau_{y}/\tau_{x}\gg 1$$
 (5)

i.e., it applies when the chemical variable is "fast" and the medium variable is "slow". In this extreme case, slow medium motion determines the total kinetics; eq 4 is formulated for the probability distribution function F(y,t) and describes its time evolution. The diffusion term describes spatial diffusion with the diffusion constant D. The sink term is a sink representing the escape of "particles" y due to a chemical reaction; v(y) is an y-dependent rate constant usually taken in Arrhenius form

$$\nu(y) = \nu_0 \exp\left(-\frac{V(y)}{k_{\rm B}T}\right) \tag{6}$$

with a *y*-dependent activation energy V(y). This reaction is associated with an activated process proceeding along fast chemical coordinate x. The diffusion coefficient D in eq 4 and the friction constant γ in eq 3 are connected by the Einstein relation:

$$D = \frac{k_{\rm B}T}{\gamma} \tag{7}$$

The usually approximate but important methodologies developed to extract kinetic information from eqs 1-4 are generally presented either in the form of explicit expressions or as calculational algorithms for rate constants. A brief overview and additional information on eqs 1-4 are given in the Appendix.

b. Relation to Measurements of Pressure

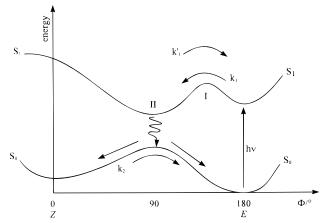
A peculiarity of stochastic dynamics is the presence of dissipative terms (the second terms of eqs 1 and 2 and second eq 3) and random forces. The energy of a dynamical system is not conserved due to these terms which implies an energy exchange with the environment. In eq 4, a counterpart of these non-Newtonian forces is diffusion motion governed by the diffusion term. The corresponding dissipative coefficients such as ξ , γ , and D are closely related to the shear viscosity η of the medium; for instance, when x represents the motion of spherical particles of radius a, the friction coefficient of eq 2 is given by the Stokes formula

$$\gamma = 6\pi a\eta \tag{8}$$

Further examples are discussed in section 3.F.f.i.

Studies of the dependence of reaction rate on viscosity provide important information on dynamical medium effects in chemical reactions.

A straightforward way to do a viscosity-dependent kinetic experiment is to perform it in a series of solvents of varying viscosity; many experiments of this sort have been reported. The approach has two significant disadvantages: the viscosity range variation is usually limited to 1 order of magnitude, and static solvent effects may change such important kinetic parameter as the activation energy. Reaction free energy surfaces are normally solvent-dependent which gives rise to static effects and hinders the separation of dynamic effects from experimental data.


The alternative approach to tune viscosity changes by means of pressure variations with the same solvent has proved to be extremely successful. By this means, viscosity variations of several orders of magnitude have become available. Of course, the problem of pressure dependence of free energy surface is inherent in this approach; its treatment is discussed below.

c. E/Z and Z/E Isomerizations in Solution

We shall exemplify the experimental studies of the viscosity dependence of reaction rates with $Z\!\!/E$ rearrangements of olefins, imines, and azo compounds:

$$A \xrightarrow{B} A \xrightarrow{B} (9)$$

where A and B are usually aromatic rings such as in stilbene; such isomerizations can, in principle, proceed both in ground (S0) and singlet-excited (S1)

Figure 22. Two-level kinetic scheme representing the photocycle of E/Z (S_1) and Z/E (S_0) isomerizations, eq 9. Rotation angle Φ is a measure of a reaction coordinate.

states. They may involve elementary steps specified by the scheme of energy levels shown in Figure 22.

The twist angle \widehat{O} associated with the internal rotation is the essential variable describing the evolution along the reaction coordinate for C=C and N=N bridges. Ground-state reactions with C=N bridges are a special case for which an inversion mechanism at the nitrogen center⁴⁹⁶⁻⁴⁹⁸ causes the electronic structure of the TS to be quite different.

The photoinduced reaction, schematically shown in Figure 22, proceeds as follows. A stable *E* molecule on the S_0 free energy surface is photoexcited to the S₁ surface from which, surmounting a small potential barrier in configuration I, it drops to the intermediate state II, the twisted configuration at the minimum of S_1 . It makes a transition to the top of the S_0 surface; about half of its population relaxes along the S_0 surface to the Z form and half relaxes to the original E form. In the overall process, surmounting the potential barrier on the S_1 surface, is rate limiting; the corresponding rate constant is k_1 . Then, measuring the rise of population in the Z form, this rate constant can be determined. The Z form is metastable on S₀ surface; hence it is gradually transformed back to the E form after surmounting the potential barrier with rate constant k_2 . By varying experimental conditions, the excited- and ground-state reaction kinetics can be measured.

Another important reaction is the twisted intramolecular charge transfer (TICT) which also proceeds in both excited and ground states. Only the photoreaction has been systematically examined in many solvents. A typical example is the process⁶⁸⁴

The planar reactant molecule in its S_1 state undergoes an isomerization into a twisted configuration corresponding to point II in Figure 22. This change is accompanied by a strong change in intramolecular polarization. The evolution which follows is that

Table 5. Experimental Data for $E \rightarrow Z$ Reaction 9 in the Excited S₁ State

reaction, no.	${ m solvent}^a$	<i>T</i> , K	pressure range (<i>P</i> , MPa)	viscosity range (η, mPa s)	rate constant range $(k, 10^9 \mathrm{s}^{-1})$	$E_{ m a}$, kJ mol $^{-1}$	β	ref(s)
1. (E)-stilbene (ES)	n-C _k H _{2k+2} (I)							
	k = 2 - 4	295 - 303	1 - 600	$(38-152) \times 10^{-3}$	31-5	7.5		690 - 692
$[\bigcap]$	C_2H_6 (sc)	306 - 433	3 - 430	$(10-130) \times 10^{-3}$	86-13		\sim 0.5	692
	C_3H_8 (sc)	384	22-400	$(70-430) \times 10^{-3}$	54-29			692
\sim \downarrow l	CO_2 (sc)	297, 335	7-500	$(35-420) \times 10^{-3}$	65-11	7-8		692
\bigcap	SF_6 (sc)	298-330	6-140	$(75-180) \times 10^{-3}$	61-13			692
\otimes	Xe (sc)	298	10-160	$(100-150) \times 10^{-3}$	48-30			692
	CHF ₃ (sc)	330	110-310		68-56			692
	$n-C_kH_{2k+1}OH$ $k=1, 2$	298	0.1-595	0.57-42.7	23-2.3		depends on	693, 694
	1. — 2. 4	200 445		15 00			viscosity	602 604
0 (1E 0.7) 1 4 dishered	k = 3, 4 C ₂ H ₆ (g, sc)	298-445 $306-4212$	3-290	$15-60$ $(13-85) \times 10^{-3}$	50-3.5		0.3 - 0.5	693, 694 695
 (1E, 3Z)-1,4-diphenyl- 1,3-butadiene (DPB) 	$C_{2}H_{8}(g, sc)$ $C_{3}H_{8}(g, sc)$	393	3-250 13-450	$(52-420) \times 10^{-3}$	30-3.3 20-7			695
——————————————————————————————————————	$n-C_4H_{10}$ (g, sc)	407	0.34	10×10^{-3}	40			695
$\langle \bigcirc \rangle$	$CO_2(g, sc)$	332-384	5-380	$(19-38) \times 10^{-3}$	50-19			695
\searrow	$SF_6(g, sc)$	364-388	3.3	(10 00) × 10	30			695
	$n-C_kH_{2k+2}$ (1), $k=2-4$	298	0.24 - 620	$(39-1300) \times 10^{-3}$	60-5	10-11	1	695, 696
$\overline{\Diamond}$	n - C_k H _{2k+2} , k = 5-12	298	0.1 - 547	0.23-11.4	1.54 - 0.18			696
	$n-C_kH_{2k+1}OH,$ $k = 1-5$	298	0.1 - 675	0.57-159	26.5 - 0.5		0.99 - 1.03	693
3. (Z)-stilbene	n-C _k H _{2k+2} , k = 5, 6, 8, 9	295, 390	0.1 - 385	0.23-7.9	$(3-0.3)\times10^3$	negligible	1	697, 698
	MeOH	295	0.1 - 320	0.57 - 1.38	$(0.8-2) \times 10^3$			697
\triangle	MeCN	295	0.1 - 315	0.37-0.93	$(1.2-2.8) \times 10^3$			697
	PMMA (polymethyl	295	0.1		(======================================			697
	methacrylate)							
4. 2-vinylanthracene (2VA)	C_2H_6 , CO_2 (sc)	323	6-12	0.02 - 0.045	0.0.011		0.4	489
ll l	$n-C_kH_{2k+2},$ k=5, 6, 8, 10	303	0.1 - 500	0.2 - 7.2	0.2 - 0.11		0.4	489b
	K = 3, 0, 6, 10							
5. 2-isopropenylanthracene		303	0.1-490	0.2-8.8	2-0.3			699
II	k = 5 - 12							
© © Me						15.5	0.23	700

^a Notation: gas phase (g), liquid phase (l), supercritical fluid (sc).

described for reaction 9. The viscosity dependence of k_1 has been measured by several research groups, $^{490,491,684-689}$ some of them using high-pressure experiments. 490,491,688,689

d. Organization of the Tables

Summaries of experimental data concerned with reactions 9 and 10 are listed in Tables 5–7. Pressure-dependent experiments and those with the solvent variation are treated separately. We emphasize ranges within which pressure, viscosity, and rate constants were varied. Reliable theoretical conclusions are possible only when these ranges are wide enough. Rate constants k in Table 5 correspond either to k_1 or to k_1 in Figure 22. For ground-state reactions (Table 6) k corresponds to k_2 . The viscosity and rate constant ranges in several cases were estimated from the figures given in the original works. Observed activation energies E_a embody a rough measure of the height of reaction barrier for the corresponding elementary process.

In Table 7, we list values of viscosity coefficients β (see eq 12 below) experimentally estimated for both E/Z photoreaction and TICT (10). They have mainly been obtained by experiments performed at ambient

pressure with various solvents. A great variety of solvents was studied. The TICT experiments with varying pressure are also included (see footnote c). Usually accurate separation of static effects (see section 3.F.e) was not made for entries in Table 7.

e. Static Effects in Isomerization Reactions

Static medium effects are interpreted as changes of the reaction free energy surface by the solute environment. Essential among them are changes of heights of free energy barriers, i.e., of classical activation energies. When a solute charge distribution changes in the course of a reaction they become obvious. This effect is known for excited-state isomerizations. Even in hydrocarbon reactants, such as (*E*)stilbene, the S₁ twisted configuration II (the minimum on S₁ curve, Figure 22) is strongly polarized in a narrow range of twisting angle \hat{O} near 90°; this effect has been called "sudden polarization".711-715 Although its early estimates seem to be exaggerated, quantum-chemical studies of model systems^{714–724} and experiment⁷²⁵ support significant charge separation in excited configuration II. No such estimates are available for TS configurations of photoreactions

Table 6. Experimental Data for $Z \rightarrow E$ Reaction 9 in the Ground S₀ State

compound ^a (X and substituents in the second ring			pressure range	viscosity range	rate constant range ^{c} (k , s ⁻¹) at lowest	$E_{ m a}$, kJ mol $^{-1}$		
are indicated)	$solvent^b$	T, °C	(<i>P</i> , MPa)	$(\log \eta, Pa s)$	temperature	(at 0.1 MPa)	β	ref(s)
$1. X = N, 4-NO_2$	EtOH	5	0.1-800	-2.9-(-1.3)	8.5-144	49.7		495b
DNAB	AcOMe	5 - 40	0.1 - 600	no data	0.1 - 1.5	48.6		unpublished
	GTA	5 - 40	0.1 - 800	1-7	0.32 (1.35) 0.10	49.5	0.59 - 0.74	$49\hat{6}$
	MPD	-5 to 35	0.1 - 600	1 - 7	1.7 (4.35) 1.1	50.3	0.28 - 0.42	497
2. $X = N$, 2-MeO, 4-NO ₂	GTA	5 - 35	0.1 - 600	1 - 6	0.09 (0.50) 0.04	50.8	0.51 - 0.56	496
DMNAB	MPD	-5 to 35	0.1 - 600	1-7	0.69 (1.86) 0.45	50.2	0.28 - 0.31	
3. $X = CH, 4-NO_2$	GTA	5 - 25	0.1 - 540	1 - 4	219-45.9	53.5	0.66	496
DBNA	MPD	-10 to 10	0.1 - 480	1 - 6	64.8 - 17.0	53.5	0.53	497
	DCMP	-5 to 20	0.1 - 420	1-8	2.6 - 0.6	54.6	0.52	495
4. X = CH, 4-Br	GTA	5-25	0.1 - 600	1 - 6	0.37 - 0.097	71.3	0.73	496
DBBA	MPD	-5 to 10	0.1 - 600	1-7	0.055 - 0.018	72.9	0.67	497
	DCMP	0 - 20	0.1 - 510	1 - 9	0.43 - 0.03	67.2	0.66	495
5. X = CH, 4-COOEt	GTA	5-25	0.1 - 570	1-5	10.5 - 2.12	62.6	0.68	496
DBEA	MPD	-5 to 15	0.1 - 540	1-5	3.45 - 1.4	62.3	0.61	497
	DCMP	0 - 20	0.1 - 420	2-7	7.44 - 3.32	58.6	0.56	495
6. $X = CH, 4-NMe_2$ DBDA	GTA	20-35	0.1-600	1-5	0.069 - 0.024	75.4	0.22-0.35	496
7.	GTA	-10 to 10	0.1 - 400	−1 to 6	941 (1270) 4.7	27.2	0.60 - 0.54	497
N=N								

^a Compounds of the general structure:

^b Glycerol triacetate, GTA; 2-methyl-2,4-pentanediol, MPD; 2,4-dicyclo-

hexyl-2-methylpentane, DCMP. c The figure in brackets (if it is present) corresponds to the maximum of the kinetic curve (see Figure 24).

(point I in Figure 22) but some polarization at this TS point for (*E*)-stilbene and 1,4-diphenylbutadiene (DPB) is confirmed implicitly by a significiant lowering of activation barriers in polar alcohols as compared to hydrocarbon solvents (see Table 5). 693,694,726–728 Solvent effects on the potential barrier have been also assumed for (*E*)-stilbene in hydrocarbon solvents, 690–692,729–732 where polar effect is not expected. The barrier height varied linearly with the solvent density. The origin of this effect may be due to changes of cavitation 733–735 and dispersion energies.

For ground-state isomerizations with much larger barriers, polarization effects are usually less significant unless polar substituents are present and a reaction proceeds in a polar solvent; lowering of the energy barrier is especially important when the electronic push-pull mechanism is promoted by a pair of substituents, one of which is an electron donor and the other is an electron acceptor. This mechanism is efficient for compounds with N=N double bond bridges; compounds such as 4-(dimethylamino)-4'-nitroazobenzene (DNAB) and 4-(dimethylamino)-2'-methoxy-4'-nitroazobenzene (DMNAB) (see Table 6) provide a typical example. 495b, 496, 736, 737 However, the polar effect seems to be absent in the case of C= N bridges where the reactive motion changes from an internal rotation to inversion at the nitrogen

Variations in rate due to static solvent effects can be comparable in magnitude with or even larger than purely dynamical effects. A basic difficulty in the interpretation of viscosity dependencies in a series of solvents is a necessity of an accurate appraisal of these changes.

Static effects can also be present in the case of a compressed single solvent. Thus, in ground-state reactions, large negative activation volumes are typical for push-pull substituted azobenzenes. 495b,496 Provided that polar effects are neglibible, however, static effects of pressure are expected to be small. In this case a simple mechanical model of activation volumes attributes effects of pressure to changes in the size of the cavity corresponding to the excluded volume of a solute. In an isomerization reaction, a solute mainly changes the shape of its cavity, rather than the size. This is in contrast to the drastic cavity changes in bond-forming reactions such as the Diels-Alder reaction. The small observed activation volumes (<1-2 cm³ mol⁻¹) observed for many isomerizations confirm this point of view.

Finally, a comment must be made about a connection of observed Arrhenius activation energies $E_{\rm a}$ and heights of the corresponding free energy barriers. A direct identification is invalid because of many reasons. Among them, in viscosity-dependent experiments, there is a viscosity contribution to $E_{\rm a}$. This correction (of order of several kilojoules per mole) can change the estimated barrier height. The effect is important especially for low barrier photoisomerizations. 691,694,726,732,740 It is often eliminated by the use of isoviscosity activation energies; the barrier height appears to be constant in the isoviscosity Arrhenius plots throughout the homologous series. Unfortunately, this separation is not always reliable. 692,731,732

Table 7. Viscosity Coefficients β for Several Isomerization and TICT Reactions in the Excited S_1 State

compound	β	ref(s)	
ES ^a	0.7	701	
ES^a	0.32	702	
DPB^a	0.59 (hydrocarbons)	703	
DPB^a	0.92 (alcohols)	704	
DPB ^a	0.51 (nitriles)	705	
$DODCI^b$	0.26 (ground state)	706	
$DODCI^b$	0.43 (excited state) 0.44 (nitriles)	706 705	
MeO OMe	0.44 (mtries)	703	
II.	0.2	699, 700, 707	
	0	700, 707	
II.	0.23	699, 700	
©©© Me	0.4	699 (<i>P</i>)	
	1	708, 709	
NMe ₂	0.7 (EtOH)	688, 689	
	0.44 (n-PrOH)	710 (P)	
	0.3-0.35 $(n-C_kH_{2k+1}OH, k = 4, 5, 8)$	710 (P)	
NEt ₂	0.7 (<i>n</i> -PrOH) 0.1-0.2 (<i>n</i> -PentOH)	492 (<i>P</i>) 492 (<i>P</i>)	
O O O			
NH ₂ NH ₂	0.2 (<i>n</i> -PrOH and higher alcohols)	490, 491 (<i>P</i>)	

 a Abbreviations are borrowed from Table 5. b 3,3′-Diethyloxadicarbocyanine iodide. c "(*P*)" indicates pressure-tuned experiments in a single solvent.

f. Dynamic Medium Effects in Isomerization Reactions

i. Interpretation of Friction Coefficients in Terms of Viscosity. Discussions of dynamical solvent effects in reaction rates are, as a rule, based on the Langevin or Kramers equation, eq 2. For isomerization reaction, when the reactive motion can hardly be viewed as a translation of a spherical particle, several workers have suggested the use of rotational diffusion periods of the solute particle as a measure of the solute—solvent friction of the Kramers model. This quantity is available from spectroscopic measurements; and its theoretical estimate from modifications of the Stokes formula (8) have been discussed. 701,741–744

In the two-dimensional eq 3, the interpretation of γ must be different. This is the friction corresponding to a purely medium coordinate y. In the context of reaction dynamics, y is a collective medium mode;⁷⁴⁵

that is to say, a strongly correlated motion of a large ensemble of solvent particles. Generally, two types of collective modes are involved in an isomerization process. One consists of an adjustment of solvent dipolar particles to the solute charge distribution varying in the course of a reaction (the polarization coordinate); the second represents their displacements accompanying a change of the cavity shape (the shape coordinate). The first type of motion is mainly governed by electric forces while the second is associated with changes of a cavitation free energy.^{733–735} Correspondingly, we encounter two types of friction: dielectric and hydrodynamic ones. Elementary motions of medium particles, which form a collective mode after their superposition, are frequently treated as molecular rotations in both these cases. The corresponding relaxation constant for this model is the Debye period $\tau_{\rm D}$. The Works for nonpolar solvents. For a purpose of description of the polarization-type collective mode in charge-transfer processes (with dielectric friction), the longitudinal period $\tau_{\rm L}$ is more appropriate; ^{746,747} it is defined as $\tau_{\rm L}$ $= \tau_{\rm D}(\epsilon_{\infty}/\epsilon_0)$, where ϵ_0 and ϵ_{∞} are static and optic dielectric permittivities. The simplest expression for $\nu is^{748,749}$

$$\gamma = \frac{4\pi\epsilon_0 \epsilon_{\infty}}{\epsilon_0 - \epsilon_{\infty}} \tau_{\rm L} \tag{11}$$

More sophisticated treatments have been discussed. ^{750–754} Periods τ_D and τ_L show a clear correlation with viscosity changes induced by pressure. ^{755–757}

Dynamic variables x and y in eqs 1–4, as applied to elementary chemical processes, are microscopic quantities and one needs to consider whether macroscopic relations such as eqs 8 or 11 are appropriate to describe their relaxation. In a theoretical treatment at a truly microscopic level, relaxation constants should be extracted by calculating time correlation functions for respective variables 754,758-762 which has recently become available through molecular dynamics and other computational techniques developed in the theory of liquids. Fortunately, microscopic relaxation parameters correlate reasonably well with macroscopic viscosities, as measurements of rotational relaxation constants (microscopic characteristics) for (E)-stilbene in hydrocarbon solvents demonstrate within a wide pressure range.⁷⁴³ It is thus seen that, independently of the microscopic mechanism of friction effects, their clear correlation with macroscopic shear viscosity is observed. This reveals a rationale behind using the macroscopic viscosity as a measure of strength of the dissipative terms in stochastic eqs 1-3. The same is true for the diffusion coefficient D in eq 4 because it is related to γ in eq 3 by the Einstein relation (7).

When the generalized Langevin eq 1 is used, an explicit expression for the kernel $\xi(\tau)$ is needed. Its parametrization has been discussed in the literature. $^{701,702,705,763-769}$

ii. Viscosity Dependence of Photoisomerization Reaction Rates. As noted above, significant preliminary work is necessary in order to correct observed viscosity dependencies of reaction rates for

static effects. For Z/E photoisomerizations this has been done very well by Troe and Schroeder et al. $^{690-697,740,770}$ The so-revealed dynamical effects are conventionally discussed in terms of one-dimensional stochastic dynamics and the corresponding Kramers-Grote-Hynes (KGH) kinetic treatment. 692,726,731,732,771 High and low viscosity ranges should be considered separately in terms of this approach, as discussed in the Appendix.

In the high viscosity limit, rate constants change according to the inverse power law:

$$k \sim \eta^{-\beta} \qquad (0 < \beta < 1) \tag{12}$$

Kramers theory predicts that $\beta=1$ in this strong friction kinetic regime. Such sort of dependence has been observed for DPB^{693,695} (Table 5).

Probably, β is also close to unity in (Z)-stilbene, 697,729,772 tetraphenylethylene, and (E)-1-[1-indanyliden]indan ("stiff stilbene"). 692 A fractional β value is more usual, however (see Tables 5 and 7). Many authors have interpreted this result in terms of the Grote—Hynes (GH) 767,768 generalization of the Kramers approach, when the generalized Langevin equation, eq 1, with memory effects is considered instead of its Kramers limiting case. $^{489,489\text{b},699,701,702,726,727,764-766}$ However, alternative explanations have been also suggested. $^{690-692,730-732,770}$

The GH theory actually provides an approximate expression for the rate constant generated by eq 1 (see the Appendix). No explicit derivation of expression 12 from the GH theory has been achieved. The GH treatment generally predicts a decay of the rate constant weaker than $1/\gamma$ in accord with many experimental trends and also with empirical formula (12). This formula is flexible enough to reproduce the desired result within a limited viscosity range. Many authors did not try to explicitly extract β values from their data. This caution is understandable due to ambiguity in separating static effects (section 3.F.e) from the experimental viscosity dependence. Some of the data included in Table 7 are open to criticism from this point.

The GH rate expression for large and intermediate friction ranges combined with the special Kramers approach for treatment of the low friction range constitute the KGH theory. The Kramers theory predicts an increase of the rate with increase of viscosity in the low viscosity range; this corresponds to the so-called "energy diffusion mechanism". Much effort has been expended in searches of this kinetic regime. It was detected^{695,730,740,773} at much lower viscosities (and in lower pressure range) than those expected on the basis of the KGH theory. This effect has only been observed in supercritical state of hydrocarbon solvents, i.e., at very low solvent densities. This density shift can be explained as a dimensionality effect. According to the energy diffusion mechanism, slow thermal activation of reactant molecules becomes rate limiting. In the one-dimensional KGH treatment, the activation is due to the random force (GRF) which is directly connected to the friction coefficient γ via fluctuation—dissipation theorem.⁷⁵⁸ This is the origin of a linear viscosity dependence of rate constant in the low friction range.

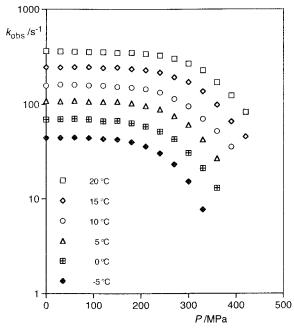
In KGH theory, γ is associated with the one-dimensional x motion. On the other hand, in polyatomic chemical systems other intramolecular modes can promote x activation due to an intermode energy exchange. As a result, the kinetic regime in which activation stage becomes rate limiting is shifted to smaller γ values. The total dependence of the rate over the whole viscosity range studied was described in terms of a combined treatment, 690,692,731 where the energy diffusion limit is described in terms of a standard Lindenmann approach of the theory of gasphase unimolecular reactions. The medium and large viscosity behavior is interpreted in terms of the Kramers model. The combined rate expression is

$$k = \frac{k_0 [M] k_{\infty}}{k_0 [M] + k_{\infty}} \left[\sqrt{\left(\frac{\gamma}{2m\omega^{\ddagger}}\right)^2 + 1} - \frac{\gamma}{2m\omega^{\ddagger}} \right]$$
(13)

where k_0 is the collision rate constant and [M] is the concentration of solvent particles; $k_0[M]$ represents the activation rate (the low-pressure limiting rate coefficient). The high-pressure gas-phase limit is denoted as k_{∞} and calculated by means of the technique of RRKM theory. 774

The second factor in eq 13 represents a prefactor of the Kramers rate expression (see the Appendix, eqs A1 and A2) normalized to 1 when $\gamma \to 0$. Here ω^{\ddagger} represents the frequency of the free energy profile at the top of the barrier. In this way the inverse viscosity law (12) with $\beta=1$ is obtained in the high friction limit.

iii. Viscosity Dependence of Ground-State Isomerization Reaction Rates. A distinctive feature of Z/E isomerization in the ground state is the high activation barrier ($E_{\rm a} \geq 50~{\rm kJ/mol}$). Reaction rates are lower than those observed in photoisomerizations by many orders of magnitude. This makes their dynamical interpretation more definite because the relative significance of static effects decreases.


The most important observations have been made by studying pressure effects in high viscosity solvents, 495,495,496,497 see Table 6. Their heuristic interpretation suggests a two-step reaction mechanism 496,763,775 according to which an isomerization process involves a rearrangement of a solvation shell as a necessary ingredient. This process is considered as a separate kinetic step with rate constant $k_{\rm f}$. The rate constant for the solute transformation in an idealized nonviscous medium (viscosity effects neglected) is denoted as $k_{\rm iso}$. Then the total observed rate expression is

$$\frac{1}{k} = \frac{1}{k_{\rm iso}} + \frac{1}{k_{\rm f}} \tag{14}$$

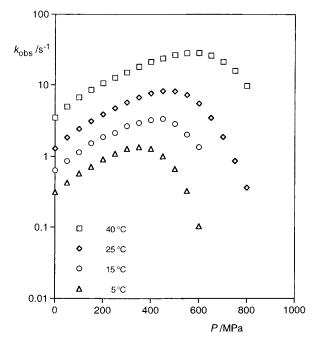
It is supposed that at low pressure $k_{\rm f}\gg k_{\rm iso}$ and extrapolation gives

$$k_{\rm iso} = \lim_{P \to 0} k \tag{15}$$

It is also assumed that the pressure dependence of $k_{\rm iso}$ obeys the conventional approach accepted in high-pressure kinetics. Because this treatment, introducing activation volume as a measure of pressure

Figure 23. Pressure dependence of the rate constant $k = k_{\text{obs}}$ for the ground state \mathbb{Z}/E isomerization of DBNA in DCMP.

dependence, is essentially based on the standard TST, one assumes that


$$k_{\rm iso}(P) = k_{\rm TST}(P) = k_{\rm TST}(\eta) \tag{16}$$

where the η dependence is introduced via the experimentally measured monotonic function $\eta(P)$. It is important to note that k_{TST} accounts for static pressure effects and therefore formulas 14–16 provide an efficient procedure for the extraction of purely dynamical viscosity effects from observed rate constants.

For instance, in Figure 23 for DBNA in DCMP, $k_{\rm iso}$ is pressure-independent (nearly zero activation volume) but for DNAB in GTA in Figure 24 a significant negative activation volume is observed due to electrostriction in its polar TS. 496,763 It is reasonable to assume that the medium reorganization rate constant $k_{\rm f}$ can be described in terms of KGH theory so that eq 12 holds. The corresponding values of β are listed in Table 6.

Kinetic curves such as those shown in Figures 23 and 24 have been observed for other reactions. 776,777 They are well-described in terms of a two-dimensional stochastic eq 3 in which x is a chemical coordinate (the isomerization coordinate for the present case) and y is a collective medium mode. A simplified version of eq 3, the Agmon—Hopfield (AH) eq 4, was applied to analyze the pressure dependence of Diels—Alder reactions and nonequilibrium solvation effects, leading to curves shown in Figures 23 and 24 were predicted. Transfer Generally, a phenomenological two-step eq 14 can be mapped on the theoretical rate expression of the AH model giving:

$$\frac{1}{\langle k \rangle} = \frac{1}{k_{\text{TST}}} + \frac{1}{k_{\text{f}}} \qquad k_{\text{TST}} = \lim_{\eta \to 0} \langle k \rangle$$
 (17)

Figure 24. Pressure dependence of the rate constant $k = k_{\text{obs}}$ for the ground state Z/E isomerization of DNAB in CTA

where $\langle k \rangle$ is an averaged rate constant (an inverse survival period) reducing to the usual monomolecular rate constant when the kinetics are true exponential. Averaging is necessary when kinetics are polyexponential, a typical situation for the AH model in the high friction region (see the Appendix). By using these definitions, the equation defining $k_{\rm f}$ can be derived from the AH model. Ref. An empirical interpretation of $k_{\rm f}$ as a rate of solvent reorganization seems to be successful. September 197. Expressions for $k_{\rm f}$ beyond its KGH estimate are available. They provide an interpretation of the inverse-power law (12). When $\gamma \to \infty$, $k_{\rm f}$ behaves asymptotically as $1/\gamma^{784,785}$ but in the intermediate range a weaker dependence is expected in accord with eq. 12.

iv. Interrelation of the Two Theoretical Approaches and Their Validity. Our interpretation of kinetics of photoisomerization and thermal isomerization reactions followed the original literature and used two theoretical models: the KGH theory for photoreactions and a two-step mechanism closely related to the AH theory for thermal reactions. As shown in the Appendix, these two kinetics are incompatible to a significant extent. The non-TST kinetic regimes they describe are essentially different. The KGH model is one-dimensional and its non-TST region corresponds to a low-friction limit for a single reaction coordinate x. The AH model is twodimensional and its non-TST region corresponds to a high-friction limit for the medium coordinate y. The two theories partially overlap in the regions of high friction of the KGH and of low friction of the AH approaches; these regions include the TST kinetic regime as well.

Several authors have mentioned that an explicit multidimensional dynamical study is desirable for a true understanding of the recent kinetic experimental material in the field of condensed phase reactions. ^{692,726,731,732} Invoking the AH model brings a semiquantitative background to this idea.

Some experimental data support its AH interpretation of the non-TST kinetics for ground-state isomerizations. 497,763,775 Furthermore, a polyexponential kinetic behavior, missing in the KGH approach, is an ingredient of the AH kinetics. Nonexponential kinetic evolution curves are frequently observed in ultrafast spectroscopic experiments testing solvation dynamics in electron-transfer systems 751,752,786-794 including Z/E isomerization and TICT reactions in polar solvents. 688,689,698,709 Interpretation of this effect in terms of the AH equation 795,796 is now conventional. 792-794 Nonetheless, it should be remembered that both KGH and AH approaches involve serious approximations. A consistent unifying description of two-dimensional reaction dynamics is possible only in terms of a more sophisticated stochastic theory 785,797 including both these models as opposite limiting cases.

G. Appendix: Rate Expressions of Stochastic Theories

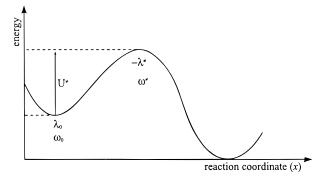
a. Kramers-Grote-Hynes (KGH) Theory

The Kramers equation, eq 2, describes a rate of escape of particles from one-dimensional potential well as shown in Figure 25. The potential profile is characterized by the barrier height U^{\dagger} , and two force constants: λ_0 at the bottom of the well and $(-\lambda^{\ddagger}) > 0$ at the barrier top. The corresponding frequencies are defined as $\omega_0{}^2 = \lambda_0/m$ and $(\omega^{\ddagger})^2 = -\lambda^{\ddagger}/m$. The rate expressions are approximately estimated for different ranges of the friction constant. In the intermediate and large γ range the result is

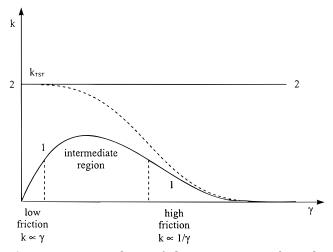
$$k = \frac{\Omega}{2\pi} \left(\frac{\lambda_0}{\lambda^{\ddagger}} \right)^{1/2} \exp\left(-\frac{U^{\ddagger}}{k_{\rm B}T} \right) \tag{A1}$$

$$\Omega = \sqrt{(\gamma/2m)^2 + (\omega^{\dagger})^2} - \frac{\gamma}{2m}$$
 (A2)

where the motion in the vicinity of the barrier top (see Figure 25) is considered as a rate-limiting process; Ω is the decay frequency. The asymptotic case of large γ reduces to the $1/\gamma$ (and $1/\eta$) dependency of the rate:


$$k = \frac{\omega_0 \omega^{\dagger}}{2\pi} \left(\frac{m}{\gamma} \right) \exp \left(-\frac{U^{\dagger}}{k_{\rm B}T} \right) \tag{A3}$$

If eqs A1 and A2 are formally extended to the region of low friction then the result


$$k = \frac{\omega_0}{2\pi} \exp\left(-\frac{U^{\dagger}}{k_{\rm B}T}\right) = k_{\rm TST} \tag{A4}$$

is obtained, which is equivalent to the application of the TST without allowance for the influence of the medium.

In fact, eqs A1 and A2 are invalid in the low friction limit where the rate-limiting process changes its physical nature. Here a thermal activation of mol-

Figure 25. The free energy profile used in the onedimensional KGH theory; U^{\dagger} is the height of the barrier, λ_0 and $-\lambda^{\dagger}$ are force constants at the reactant minimum and at the top of the barrier, ω_0 and ω^{\dagger} are the corresponding frequencies.

Figure 26. Dependence of the rate constant k on the friction coefficient γ in the Kramers theory (curve 1) and in the one-dimensional TST (straight line 2 and formula (A4)). The region of the high and low friction are described by simple asymptotic formulas, dashed curve represents calculations by eqs A1 and A2.

ecules in the reactant well limits the escape rate. The corresponding rate constant is proportional to γ . This is the so-called energy diffusion kinetic regime. The two asymptotic kinetic regimes are connected by a smooth curve with a maximum, where $k_{\rm max} < k_{\rm TST}$, as shown in Figure 26.

For the generalized Langevin equation, eq 1, the same Arrhenius expression (A1) operates in the regime when surmounting the barrier is a limiting kinetic step. Only the decay frequency Ω is changed: this is a root of a transcendent equation originally derived by Grote and Hynes.⁷⁶⁸ In the lowfriction limit the energy diffusion kinetic regime works and friction dependence of the rate is qualitatively the same as in the Kramers case^{767,769,798,799} (for eq 1 the integral $\int_0^\infty \xi(\tau) d(\tau)$ is a measure of the friction strength). The rate expression (A1) valid in the intermediate and strong friction range is an essence of the one-dimensional KGH theory. It can also be extended to multidimensional systems by an appropriate change of the equation determining the decay frequency Ω and by substituting the factor (λ_0 / $\lambda^{\ddagger})^{1/2}$ by a more complicated combination of all force constants characterizing the reactant well and the barrier top. 767,800-804

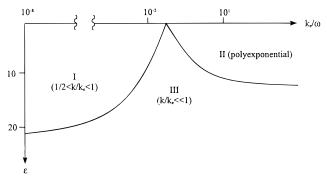
It should be noted that the two kinetic regimes present in the KGH approximation do not at all exhaust the diversity of kinetic behavior inherent to the generalized Langevin eq 1.

b. Kinetic Regimes Corresponding to the AH Equation

A two-dimensional stochastic dynamics as presented by eq 3 exposes several kinetic regimes. A somewhat simplified picture is obtained in terms of its reduced version, namely the AH eq 4. This reduction is legitimate in the limit (5) when the relaxation of medium coordinate y is slower than the escape rate along reaction coordinate x. Kinetic behavior generated by the AH equation was discussed in original papers of Agmon and Hopfield, 805,806 later by Sumi, Marcus, and Nadler, 995,796 and, most recently, by Berezhkovsky and Zitserman. 784,807

The total picture can be reconstructed in terms of several key quantities:

$$k_{\rm e} = \lim_{\gamma \to 0} k \approx k_{\rm TST}$$


$$U_y^{\dagger} = \frac{\lambda (y^{\dagger} - y_0)^2}{2}$$

$$\omega = \frac{1}{\tau_y} = \frac{\lambda D}{k_{\rm B} T}$$
(A5)

The quantity $k_{\rm e}$ is a rate constant corresponding to the two-dimensional KGH treatment of eq 3 simplified to a quasi-one-dimensional form according to the basic approximation (5), reducing eq 3 to the AH equation. It has an Arrhenius temperature dependence but it is slightly distinguished from a standard one-dimensional TST expression (A4) and can be considered as a two-dimensional k_{TST} . In second eq A5, U_{ν}^{\dagger} is a contribution to the potential barrier due to the medium coordinate. It is extracted from a twodimensional free energy surface U(x,y) of eq 3. The cross section of this free energy surface along coordinate y (the potential U(y) of eq 4) can be considered as a parabola with force constant λ ; the quantity (y^{\dagger} $-y_0$) is a shift of the TS position relative to the reactant minimum along the medium mode. Finally, the medium frequency ω is the inverse relaxation period for the y motion establishing its time scale; it is closely related to the diffusion coefficient D.

Now we can construct a pair of dimensionless parameters mainly determining the AH kinetics, namely, $k_{\rm e}/\omega$ and $\epsilon = U_y^{\dagger}/k_{\rm B}T$. The first one defines a ratio of time scales for a relaxation of y and a reaction along x, thus specifying the same ratio as given in eq 5. The second is a measure of a medium reorganization energy at the TS.

A numerical investigation of the rate as a function of these parameters 808 resulted in the scheme shown in Figure 27. In the region I, the quasi-two-dimensional KGH kinetics with rate constant $k \approx k_{\rm e}$ are a good approximation. As discussed above, $k_{\rm e}$ can be considered as a two-dimensional TST rate constant and, therefore, region I can be identified with the TST region of the two-step mechanism discussed

Figure 27. Scheme of kinetic regimes for the AH eq $4.^{808}$ See eq A5 for notation; $\epsilon = U_{\gamma}^{\dagger}/k_{\rm B}T$.

in section 3.F.f.iii. Note that always $k/k_{\rm e} < 1$; region III represents exponential kinetics with the rate constant $k \ll k_{\rm e}$. The regime is promoted by a slow diffusion-like mode y. The rate here shows a non-Arrhenius temperature dependence. This region can be associated with the "non-TST" region of the two-step mechanism discussed in the section 3.F.f.iii. 496,763,775 Finally, region II shows a polyexponential kinetic evolution which cannot be described in terms of a rate constant. That regime has been disregarded in the two-step model.

4. Acknowledgments

A.D. is pleased to acknowledge financial support from the Alexander von Humboldt Foundation that enabled him to participate in this project. R.v.E. gratefully acknowledges financial support from the Deutsche Forschungsgemeinschaft, the Volkswagen Foundation, the Fonds der Chemischen Industrie, and the Max-Buchner Forschungsstiftung. R.v.E. and C.D.H. sincerely appreciate the excellent collaborations with current and earlier members of their research group. T.A. is grateful to the Ministry of Education, Science, Sports and Culture of Japan for financial support of his work (Grant No. 0845204). M.V.B. is grateful to the Russian Fund of Basic Research for financial support of his work (Project No. 96-03-32544). W.leN. thanks the National Science Foundation for support of his work in this area.

5. References

- van Eldik, R.; Asano, T.; le Noble, W. J. Chem. Rev. 1989, 89, 549.
- (2) Asano, T.; le Noble, W. J. Chem. Rev. 1978, 78, 407.
- (3) van Eldik, R., Ed. Inorganic High-Pressure Chemistry: Kinetics and Mechanisms; Elsevier: Amsterdam, 1986.
- (4) le Noble, W. J., Ed. Organic High-Pressure Chemistry, Elsevier: Amsterdam, 1988.
- (5) Jurczak, J., Baranowski, B., Eds. High-Pressure Chemical Synthesis; Elsevier: Amsterdam, 1989.
- (6) van Eldik, R., Jonas, J., Eds. High-Pressure Chemistry and Biochemistry, NATO ASI Series C197; Reidel: Dordrecht, 1987.
- (7) Winter, R., Jonas, J., Eds. High-Pressure Chemistry, Biochemistry and Materials Science, NATO ASI Series C401; Kluwer: Dordrecht, 1993.
- (8) van Eldik, R., Hubbard, C. D., Eds. *Chemistry under Extreme or Non-Classical Conditions*; Wiley: New York, 1997.
- (9) Diehl, P., Fluck, E., Günther, H., Kosfeld, R., Seelig, J., Eds. High-Pressure NMR; Springer: Heidelberg, 1991.
- (10) Sherman, W. F.; Stadtmuller, A. A., Eds. Experimental Techniques in High-Pressure Research; Wiley: Chichester, 1987.

- (11) Holzapfel, W. B., Isaacs, N., Eds. High-Pressure Techniques in
- (11) Holzapiel, W. B., Isaacs, N., Eds. High-Pressure Techniques in Chemistry and Physics, Oxford: Oxford, 1997.
 (12) Taniguchi, Y., Senoo, M., Hara, K., Eds. High-Pressure Liquids and Solutions; Elsevier: Amsterdam, 1994.
 (13) van Eldik, R. et al. In Mechanisms of Inorganic and Organometallic Reactions; Twigg, M., Ed.; Plenum: New York, 1988, Vol. 5, p. 377; 1989, Vol. 6, p. 437; 1991, Vol. 7, p. 371; 1994, Vol. 8, p. 300 8, p 399.
- (14) van Eldik, R.; Merbach, A. E. Comments Inorg. Chem. 1992, 12, 341.
- (15) van Eldik, R. Pure Appl. Chem. 1992, 64, 1439.
- (16) Van Eldik, R. In Perspectives in Coordination Chemistry, Williams, A. F., Floriani, C., Merbach, A. E., Eds.; VHCH: Basel, 1992; p 52. van Eldik, R. *Organomet. Org. Synth.* **1993**, *4*, 27.
- (18) van Eldik, R. High Pressure Res. 1991, 6, 251.
- (19) Hubbard, C. D.; van Eldik, R. Instrum. Sci. Technol. 1995, 22,
- (20) Frey, U.; Powell, D. H.; Merbach A. E. In Dynamics of Solutions and Fluid Mixtures by NMR; Delpuech, J.-J., Ed.; Wiley: Chichester, 1995; p 263.
- (21) Lincoln, S. F.; Merbach, A. E. Adv. Inorg. Chem. 1995, 42, 1.
- (22) Frey, U.; Helm, L.; Merbach, A. E.; Roulet, R. In Advanced Applications of NMR to Organometallic Chemistry, Gielen, M., Willem, R., Wrackmeyer, B., Eds.; Wiley: Chichester, 1996; p
- (23) Lüdemann. H.-D. Pol. J. Chem. 1996, 70, 387. See also specific sections in refs 3 and 6-8: e.g. the Chapter by Heremans in ref
- (24) Klärner, F.-G.; Diedrich, M. K. In The Chemistry of Dienes and Polyenes, Vol. 1; Rapaport, Z., Ed.; Wiley: New York, 1997; Chapter 12.
- Jenner, G. Tetrahedron 1997, 53, 2669.
- (26) Buback, M. Pure Appl. Chem. 1996, 68, 1501.
 (27) Buback, M. Angew. Chem., Int. Ed. Engl. 1991, 30, 641.
- (28) Isaacs, N. Tetrahedron 1991, 47, 8463.
- (29) Silva, J. L.; Weber, G. Annu. Rev. Phys. Chem. 1993, 44, 89.
- (30) Wieland S.; van Eldik, R. Coord. Chem. Rev. 1990, 97, 185.
- (31) Ford, P. C.; Crane, D. R. Coord. Chem. Rev. 1992, 111, 153.
- (32) Stochel, G. Coord. Chem. Rev. 1992, 114, 269.
- (33) van Eldik, R. Pure Appl. Chem. 1993, 65, 2603.
 (34) Stochel, G.; van Eldik, R. Coord. Chem. Rev. 1997, 159, 153.
- Viana, C. A. N. Pure Appl. Chem. 1996, 68, 1541.
- Yonker, C. R.; Wallen, S. L.; Linehan, J. C. J. Supercrit. Fluids (36)1995. 8. 250.
- (37) Hoffmann, M. M.; Conradi, M. S. Rev. Sci. Instrum. 1997, 68,
- (38) Cusanelli, A.; Nicula-Dadci, L.; Frey, U.; Merbach A. E. Inorg. Chem. **1997**, *36*, 2211.
 Wishart, J. F.; van Eldik, R. *Rev. Sci. Instrum.* **1992**, *63*, 3224.
- (40) Spitzer, M.; Gärtig, F.; van Eldik, R. Rev. Sci. Instrum. **1988**, 59, 2092.
- van Eldik, R.; Gaede, W.; Wieland, S.; Kraft, J.; Spitzer, M.;
- Palmer, D. A. Rev. Sci. Instrum. 1993, 64, 1355.
 Bugnon, P.; Laurenczy, G.; Ducommun, Y.; Sauvageat, P.-Y.;
 Merbach, A. E.; Ith, R.; Tschanz, R.; Doludda, M.; Bergbauer,
 R.; Grell, E. Anal. Chem. 1996, 68, 3045.
- (43) Ji, Q.; Eyring, E. M.; van Eldik, R.; Bal Reddy, K.; Goates, S. R.; Lee, M. L. Rev. Sci. Instrum. **1995**, 66, 222.
- Doine, H.; Whitcombe, T. W.; Swaddle, T. W. Can. J. Chem. **1992**, 70, 81
- (45) Fu, Y.; Swaddle, T. W. Chem. Commun. 1996, 1171
- Sachinidis, J. I.; Shalders, R. D.; Tregloan, P. A. J. Electroanal. Chem. Interfacial Electrochem. 1992, 327, 219.
- Sachinidis, J. I.; Shalders, R. D.; Tregloan, P. A. Inorg. Chem. **1994**, 33, 6180.
- (48) Braslavsky, S. E.; Heibel, G. E. Chem. Rev. 1992, 92, 1381.(49) Peters, K. S. Angew. Chem. 1994, 106, 301.
- Westrick, J. A.; Goodman, J. L.; Peters, K. S. Biochemistry 1987,
- Schulenberg, P. J.; Rohr, M.; Gärtner, W.; Braslavsky, S. E. Biophys. J. 1994, 66, 838.
- (52) Schulenberg, P. J.; Gärtner, W.; Braslavsky, S. E. J. Phys. Chem. **1995**, *99*, 9617.
- Churio, M. S.; Angermund, K. P.; Braslavsky, S. E. J. Phys. Chem. **1994**, 98, 1776.
- (54) Jiwan, J.-L. H.; Wegewijs, B.; Indelli, M. T.; Scandola, F.; Braslavsky, S. E. Recl. Trav. Chim. Pays-Bas 1995, 114, 542.
- (55) Jiwan, J.-L. H.; Chibisov, A. K.; Braslavsky, S. E. J. Phys. Chem. **1995**, 99, 10246.
- Wegewijs, B.; Verhoeven, J. W.; Braslavsky, S. E. J. Phys. Chem. **1996**, *100*, 8890.
- Gensch, T.; Churio, M. S.; Braslavsky, S. E.; Schaffner, K. Photochem. Photobiol. **1996**, *63*, 719. (58) Gensch, T.; Braslavsky, S. E. *J. Phys. Chem. B* **1997**, *101*, 101.
- Pittet, P.-A.; Elbaze, G.; Helm, L.; Merbach, A. E. Inorg. Chem. **1990**, 29, 1936.
- Ammann, C.; Helm, L.; Merbach, A. E. *Z. Phys. Chem. Neue Folge* **1987**, *155*, 145.

- (61) Helm, L.; Hugi, A. D.; Merbach, A. E. Inorg. Chem. 1987, 26,
- (62) Dellavia, I.; Helm, L.; Merbach, A. E. Inorg. Chem. 1992, 31, 4151.
- (63)Dellavia, I.; Helm, L.; Merbach, A. E. Inorg. Chem. 1992, 31, 2230.
- Turin, E.; Nielson, R. M.; Merbach, A. E. Inorg. Chim. Acta 1987, (64)134, 79.
- (65) Dellavia, I.; Sauvageat, P.-Y.; Helm, L.; Ducommun, Y.; Merbach, A. E. *Inorg. Chem.* 1992, *31*, 792.
 (66) Gonzalez, G.; Moullet, B.; Martinez, M.; Merbach, A. E. *Inorg.*
- Chem. 1994, 33, 2330.
- Funahashi, S.; Ishii, M.; Tanaka, M. Chem. Lett. (Chem. Soc. *Jpn.)* **1987**, 871.
- (68)Cossy, C.; Helm, L.; Merbach, A. E. Helv. Chim. Acta 1987, 70, 1516
- (69) Fielding, L.; Moore, P. J. Chem. Soc., Chem. Commun. 1988,
- (70) Ishii, M.; Funahashi, S.; Tanaka, M. Inorg. Chem. 1988, 27, 3192.
- Aizawa, S.; Matsuda, K.; Tajima, T.; Maeda, M.; Sugata, T.; (71)Funahashi, S. Inorg. Chem. 1995, 34, 2042.
- Mizuno, M.; Funahashi, S.; Nakasuka, N.; Tanaka, M. Inorg. Chem. 1991, 30, 1550.
- Mizuno, M.; Funahashi, S.; Nakasuka, N.; Tanaka, M. Bull. Chem. Soc. Jpn. 1991, 64, 1988.
- Aizawa, S.-I.; Iida, S.; Matsuda, K.; Funahashi, S. Inorg. Chem. **1996**, *35*, 1338.
- Bradley, S. M.; Doine, H.; Krouse, H. R.; Sisley, M. J.; Swaddle, T. W. Aust. J. Chem. 1988, 41, 1323.
- (76) Fielding, L.; Moore, P. J. Chem. Soc., Dalton Trans. 1989, 873.
 (77) Ishii, M.; Funahashi, S.; Ishihara, K.; Tanaka, M. Bull. Chem.
- Soc. Jpn. 1989, 62, 1852.
- Soyama, S.; Ishii, M.; Funahashi, S.; Tanaka, M. Inorg. Chem. **1992**, *31*, 536.
- Powell, D. H.; Furrer, P.; Pittet, P.-A.; Merbach, A. E. J. Phys. Chem. 1995, 99, 16622
- Powell, D. H.; Merbach, A. E.; Fabian, I.; Schindler, S.; van Eldik, R. *Inorg. Chem.* **1994**, *33*, 4468.

 (81) Helm, L.; Hugi-Cleary, D.; Merbach, A. E. *J. Am. Chem. Soc.*
- **1987**, 109, 4444.
- Turin-Rossier, M.; Hugi-Cleary, D.; Frey, U.; Merbach, A. E. *Inorg. Chem.* **1990**, *29*, 1374. (82)
- (83) Frey, U.; Helm, L.; Merbach, A. E. Helv. Chim. Acta 1990, 73, 199.
- (84) Nagasawa, A.; Tanaka, H. K.; Miyoshi, M.; Saito, K. Inorg. Chem.
- **1987**, 26, 4035.
- Doine, H.; Ishihara, K.; Krouse, H. R.; Swaddle, T. W. *Inorg. Chem.* **1987**, *26*, 3240.
 Bernhard, P.; Helm, L.; Ludi, A.; Merbach, A. E.; Rapaport, I. *Inorg. Chem.* **1988**, *27*, 873.

- Inorg. Chem. 1988, 27, 873.
 Bürgi, H. B.; Hummel, W.; Ludi, A.; Merbach, A. E.; Pittet, P. A.; Stebler-Röthlisberger, M. Inorg. Chem. 1988, 27, 1358.
 Luginbühl, W.; Zbinden, P.; Pittet, P.-A.; Armbruster, T.; Bürgi, H.-B.; Merbach, A. E.; Ludi, A. Inorg. Chem. 1991, 30, 2350.
 Laurenczy, G.; Rapaport, I.; Zbinden, D.; Merbach, A. E. Magn. Reson. Chem. 1991, 29, S45.
 Dadci, L.; Elias, H.; Frey, U.; Hörnig, A.; Koelle, U.; Merbach, A. E.: Paulus, H.; Schneider, J. S. Inorg. Chem. 1995, 34, 306.
- A. E.; Paulus, H.; Schneider, J. S. Inorg. Chem. 1995, 34, 306.
- (91) Pittet, P.-A.; Dadci, L.; Zbinden, P.; Abou-Hamdan, A.; Merbach, A. E. Inorg. Chim. Acta 1993, 206, 135.
- Helm, L.; Merbach, A. E.; Kotowski, M.; van Eldik, R. *High Pressure Res.* **1989**, *2*, 49.
- Berger, J.; Kotowski, M.; van Eldik, R.; Frey, U.; Helm, L.; Merbach, A. E. Inorg. Chem. 1989, 28, 3759.
- Frey, U.; Elmroth, S.; Moullet, B.; Elding, L. I.; Merbach, A. E. Inorg. Chem. **1991**, 30, 5033.
- Hallinan, N.; Besancon, V.; Forster, M.; Elbaze, G.; Ducommun, Y.; Merbach, A. E. *Inorg. Chem.* **1991**, *30*, 1112.
- Powell, D. H.; Dhubhghaill, O. M. N.; Pubanz, D.; Helm, L.; Lebedev, Y. S.; Schlaepfer, W.; Merbach, A. E. *J. Am. Chem.* Soc. 1996, 118, 9333.
- (97) Micskei, K.; Helm, L.; Brücher, E.; Merbach, A. E. Inorg. Chem. **1993**, 32, 3844.
- Toth, E.; Pubanz, D.; Vauthey, S.; Helm, L.; Merbach, A. E. Chem. Eur. J. 1996, 2, 1607.
- Toth, E.; Vauthey, S.; Pubanz, D.; Merbach, A. E. Inorg. Chem. 1996, 35, 3375.
- Cossy, C.; Helm, L.; Merbach, A. E. Inorg. Chim. Acta 1987, 139, (100)
- Cossy, C.; Helm, L.; Merbach, A. E. Inorg. Chem. 1989, 28, 2699.
- (102) Graeppi, N.; Powell, D. H.; Laurenczy, G.; Zekany, L.; Merbach, A. E. Inorg. Chim. Acta 1995, 235, 311.
- (103) Frey, U.; Li, Z.-W.; Matras, A. *Inorg. Chem.* 1996, *35*, 981.
 (104) Cusanelli, A.; Frey, U.; Richens, D. T.; Merbach, A. E. *J. Am. Chem. Soc.* 1996, *118*, 5265.
- (105) Ducommun, Y.; Helm, L.; Merbach, A. E.; Hellquist, B.; Elding, L. I. *Inorg. Chem.* **1989**, *28*, 377.
- Frey, U.; Helm, L.; Merbach, A. E.; Romeo, R. J. Am. Chem. Soc. **1989**, *111*, 8161.

- (107) Burki, N.; Abou-Hamdan, A.; Lincoln, S. F.; Merbach, A. E.; Vincent, S. J. F. *Inorg. Chim. Acta* **1993**, *207*, 27. (108) Inamo, M.; Ishihara, K.; Funahashi, S.; Ducommun, Y.; Merbach,
- A. E.; Tanaka, M. *Inorg. Chem.* **1991**, *30*, 1580. Ishihara, K.; Mouri, Y.; Funahashi, S.; Tanaka, M. *Inorg. Chem.*

- (1991, 30, 2356.
 (110) Kura, G.; Arigata, H. Polyhedron 1993, 12, 567.
 (111) Sauvageat, P.-Y.; Ducommun, Y.; Merbach, A. E. Helv. Chim. Acta 1989, 72, 1801.
 (112) Kuroiwa, Y.; Harada, M.; Tomiyasu, H.; Fukutoni, H. Inorg. Chim. Acta 1988, 147, 7.
- (113) Chung, J.-J.; Choi, J.-H.; Kim, E.-K. *Daehan Hwahak Hwoejee* 1989, *33*, 582.
 (114) Beswick, C. L.; Shalders, R. D.; Swaddle, T. W. *Inorg. Chem.* 1886, 27, 2011.
- **1996**, 35, 991.
- (115) Kita, S.; Shibata, M.; Uchida, K. Bull. Chem. Soc. Jpn. 1992, 65, 3253.
- (116) Zhang, S.; Bajaj, H. C.; Zang, V.; Dobson, G. R.; van Eldik, R. Organometallics 1992, 11, 3901.
- (117) Lawrance, G. A.; Martinez, M.; Skelton, B. W.; van Eldik, R.; White, A. H. *Aust. J. Chem.* **1992**, *45*, 351
- (118) House, D. A.; Bal Reddy, K.; van Eldik, R. Inorg. Chim. Acta **1991**, 186, 5.
- (119) Wieland, S.; van Eldik, R. Organometallics 1991, 10, 3110.
 (120) (a) Curtis, N. J.; Lawrence, G. A.; van Eldik, R. Inorg. Chem. 1989, 28, 329. (b) Gonzalez, G.; Martinez, M.; Rodriquez, E. J. Chem. Soc., Dalton Trans. 1995, 891.
- (121) Guardado, P.; Lawrence, G. A.; van Eldik, R. Inorg. Chem. 1989, *28*, 976.
- (122) Inamo, M.; Sumi, T.; Nakagawa, S.; Funahashi, S.; Tanaka, M. Inorg. Chem. 1989, 28, 2688.
- (123) Chung, J. J.; Kim, H. T.; Bek, S. O. J. Korean Chem. Soc. 1989, *33*, 164.
- (124) Awad, H. H.; Dobson, C. B.; Dobson, G. R.; Leipoldt, J. G.; Schneider, K.; van Eldik, R.; Wood, H. E. Inorg. Chem. 1989,
- (125) Suvachittanont, S.; van Eldik, R. Inorg. Chem. 1989, 28, 3660.
- (126) Zhang, S.; Dobson, G. R.; Zhang, V.; Bajaj, H. C.; van Eldik, R. Inorg. Chem. 1990, 29, 3477.
- (127) Schneider, K. J.; van Eldik, R. Organometallics 1990, 9, 1235.
- (128) Chung, J. J.; Choi, J. H.; Kim, D. J. *Taehan Hwahakhoe Chi* **1987**, *31*, 375.
- (129) bin Ali, R.; Burgess, J.; Guardado, P. Transition Met. Chem. 1989, 13, 126.
- Schmidt, G.; Paulus, H.; van Eldik, R.; Elias, H. *Inorg. Chem.* **1988**, *27*, 3211. (130)
- (131) Elias, H.; Schmidt, G.; Küppers, H.-J.; Saher, M.; Wieghardt, K.; Nuber, B.; Weiss, J. *Inorg. Chem.* 1989, 28, 3021.
 (132) Ducomun, Y.; Nichols, P. J.; Merbach, A. E. *Inorg. Chem.* 1989,
- 28, 2643.

- (133) Takagi, M.; Ishihara, K. *Inorg. Chim. Acta* 1995, *232*, 157.
 (134) Fabian, I.; van Eldik, R. *Inorg. Chem.* 1993, *32*, 3339.
 (135) Alshehri, S.; Burgess, J.; Hubbard, C. D. *Transition Met. Chem.* **1993**, *18*, 228.
- (136) Funahashi, S.; Sengoku, K.; Amari, T.; Tanaka, M. *J. Solution Chem.* **1988**, *17*, 109.
- (137) Alshehri, S.; Burgess, J. Inorg. Chim. Acta 1991, 181, 153.
- Al-Alousy, A.; Alsheri, S.; Burgess, J.; del Mar Graciani, M.; Moya, M.-L.; Munoz, E.; Rodriguez, A.; Sanchez, F. *Transition Met. Chem.* **1993**, *18*, 179.
- Stochel, G.; van Eldik, R.; Hejmo, E.; Stasicka, Z. Inorg. Chem. 1988, 27, 2767.
- (140) Stochel, G.; van Eldik, R. *Inorg. Chim. Acta* 1989, *155*, 95.
 (141) Alshehri, S.; Burgess, J.; van Eldik, R.; Hubbard, C. D. *Inorg.* Chim. Acta 1995, 240, 305.
- (142) Barrios, A.; Graciani, M. d. M.; Jimenez, R.; Munoz, E.; Sanchez, F.; Moya, M. L.; Alshehri, S.; Burgess, J. Transition Met. Chem. **1992**, 17, 231.
- (143) Al-Alousy, A.; Alshehri, S.; Burgess, J.; Graciani, M. d. M.; Moya, M. L.; Munoz, E.; Rodriguez, A.; Sanchez, F. Transition Met. Chem. 1993, 18, 179
- (144) Reddy, K. B.; van Eldik, R. *Inorg. Chem.* **1991**, *30*, 596. (145) Stochel, G.; Chatlas, J.; Martinez, P.; van Eldik, R. *Inorg. Chem.* 1992, 31, 5480.
- (146) Stochel, G.; van Eldik, R. *Inorg. Chim. Acta* **1991**, *190*, 55.
 (147) Blandamer, M. J.; Burgess, J.; Cowles, H. J.; Horn, I. M.; Engberts, J. B. F. N.; Galema, S. A.; Hubbard, C. D. *J. Chem.* Soc., Faraday Trans. 1 **1989**, 85, 3733.
- (148) Birus, M.; van Eldik, R. Inorg. Chem. 1991, 30, 4559.
- (149) Burgess, J.; Galema, S. A.; Hubbard, C. D. Polyhedron 1991,
- (150) Blandamer, M. J.; Burgess, J.; Fawcett, J.; Guardado, P.; Hubbard, C. D.; Nuttall, S.; Prouse, L. J. S.; Radulovic, S.; Russell, D. R. *Inorg. Chem.* 1992, 31, 1383.
 (151) Blandamer, M. J.; Burgess, J.; Duce, P. P.; Elvidge, D. L.; Guardado, P.; Hubbard, C. D.; Ibechem, J. J. Chem. Soc., Faraday Trans. 1992, 88, 215.
 (152) Grace, M. R.; Swaddle, T. W. *Inorg. Chem.* 1992, 31, 4674.
 (152) Burgess, L.; Hybbard, C. D. *Inorg. Chem.* 1998, 27, 2548.

- (153) Burgess, J.; Hubbard, C. D. *Inorg. Chem.* **1988**, *27*, 2548.

- (154) Laurenczy, G.; Bugnon, P.; Merbach, A. E. *Inorg. Chim. Acta* 1992, 198, 159.
 (155) Jolley, W. H.; Stranks, D. R.; Swaddle, T. W. *Inorg. Chem.* 1992,
- 31, 507.
- (156) Kitamura, Y.; Matsuzaki, S.; Butou, T. Polyhedron 1991, 10, 1449.
- (157) Diab, H.; Hendry, P.; Ludi, A.; Reddy, K. B.; van Eldik, R. *Inorg. Chim. Acta* 1990, 175, 83.
- (158) Leipoldt, J. G.; Purcell, W.; Meyer, H. Polyhedron 1991, 10, 1379.
- Marques, H. M.; Breet, E. L. J.; Prinsloo, F. F. *J. Chem. Soc., Dalton Trans.* **1991**, 2941. (159)
- Kitamura, Y.; Takamoto, T.; Kuroda, K. Inorg. Chim. Acta 1989, 159, 181,
- (161) Kitamura, Y.; Taneda, S.; Kuroda, K. Inorg. Chim. Acta 1989, 156, 31.
- Fowless, A. D.; Lawrance, G. A.; Stranks, D. R.; Sullivan, T. R.; Vanderhoek, N. Aust. J. Chem. 1988, 41, 1263.
- Kitamura, Y.; Lawrance, G. A.; van Eldik, R. Inorg. Chem. 1989, *28*, 333
- (164) Park, Y. C.; Cho, Y. J. Bull. Korean Chem. Soc. 1988, 9, 1.
 (165) Chung, J. J.; Bek, S. O. J. Korean Chem. Soc. 1988, 32, 318.
- (166) Itoh, T.; Kitamura, Y.; Yoshitani, K. Inorg. Chem. 1988, 27, 996.
- (a) Lamprecht, G. J.; Leipoldt, J. G.; Swaddle, T. W. Inorg. Chim. Acta 1987, 129, 21. (b) Leipoldt, J. G.; Steynberg, E. C.; van Eldik, R. Inorg. Chem. 1987, 26, 3068.
- (168) House, D. A.; van Eldik, R. Aust. J. Chem. 1993, 46, 1775.
- (169) Ishihara, K.; Kitamura, Y. Polyhedron 1996, 15, 2969.
- Kitamura, Y.; Muneta, H.; Watanabe, K. Bull. Chem. Soc. Jpn. **1996**, 69, 101.
- (171) Amari, T.; Funahashi, S.; Tanaka, M. Inorg. Chem. 1988, 27,
- (172) (a) Tanaka, T.; Hida, T.; Funahashi, S.; Tanaka, M. J. Am. Chem. Soc. 1991, 113, 1259. (b) Laurenczy, G.; Ducommun, Y.; Mer-
- bach, A. E. *Inorg. Chem.* **1989**, *28*, 3024. (173) Kawaizumi, F. *J. Solution Chem.* **1995**, *24*, 651. (174) Ducommun, Y.; Laurenczy, G.; Merbach, A. E. *Inorg. Chem.* 1988, 27, 1148.
- (175) Abu-Gharib, E. A.; bin Ali, R.; Blandamer, M. J.; Burgess, J. Transition Met. Chem. 1987, 12, 371.
- (176) Ritchens, D. T.; Ducommun, Y.; Merbach, A. E. J. Am. Chem. Soc. 1987, 109, 603.
- (177) Bajaj, H. C.; van Eldik, R. *Inorg. Chem.* **1990**, *29*, 2855.
 (178) Neto, B. S. L.; Franco, D. W.; van Eldik, R. *J. Chem. Soc., Dalton* Trans. 1995, 463.
- (179) Bajaj, H. J.; van Eldik, R. *Inorg. Chem.* **1988**, *27*, 4052.
 (180) Bajaj, H. J.; van Eldik, R. *Inorg. Chem.* **1989**, *28*, 1980.
- (181) Ford, P. C.; Taube, D. J.; van Eldik, R. Organometallics 1987, 6. 125.
- Cloete, E.; Breet, E.; van Eldik, R. *J. Chem. Soc., Dalton Trans.* **1995**, 3591. (182)
- (183) Dücker-Benfer, C.; Dreos, R.; van Eldik, R. Angew. Chem., Int. Ed. Engl. 1995, 34, 2245.
- $Vest,\,P.\bar{;}\,Anhaus,\,J.;\,Bajaj,\,H.\,\,C.;\,van\,\,Eldik,\,R.\,\,\textit{Organometallics}$
- **1991**, 10, 818. Aizawa, S.; Iida, T.; Funahashi, S. Inorg. Chem. 1996, 35, 5163. (185)
- (186) Elmroth, S.; Bugarcic, Z.; Elding, L. I. Inorg. Chem. 1992, 31, 3551.
- Shi, T.; Elding, L. *Inorg. Chem.* **1996**, *35*, 5941. Prinsloo, F. F.; Pienaar, J. J.; van Eldik, R. *J. Chem. Soc., Dalton* (188)Trans. 1995, 3581.
- Hohmann, H.; Hellquist, B.; van Eldik, R. Inorg. Chem. 1992, 31. 345
- Hellquist, B.; Elding, L. I.; Ducommun, Y. Inorg. Chem. 1988, *27*. 3620.
- (191) Shi, T.; Elding, L. I. Inorg. Chem. 1996, 35, 735.
- Suvachittanant, S.; Hohmann, H.; van Eldik, R.; Reedijk, J. Inorg. Chem. 1993, 32, 4544.
- (193) Kotowski, M.; Begum, S.; Leipold, J. G.; van Eldik, R. Inorg. Chem. 1988, 27, 4472
- (194) Ducommun, Y.; Elding, L. I.; Hellquist, B.; Merbach, A. E. Inorg. Chem. **1987**, 26, 1759.
- (195) Breet, E. L. J.; van Eldik, R. *Inorg. Chem.* **1987**, *26*, 2517.(196) Mahal, G.; van Eldik, R. *Inorg. Chem.* **1987**, *26*, 2838.

Trans. 1996, 2127.

- (197) Pienaar, J. J.; Kotowski, M.; van Eldik, R. Inorg. Chem. 1989, 28. 373.
- (198) Ducommun, Y.; Helm, L. I.; Laurenczy, G.; Merbach, A. E. Inorg. Chim. Acta 1989, 158, 3.
- (199) Laurenczy, G.; Merbach, A. E. *Helv. Chim. Acta* **1988**, *71*, 1971. (200) Shi, Y.; Ji, Q.; Eyring, E. M.; van Eldik, R. *J. Chem. Soc., Dalton*
- (201) Reddy, K. B.; Cao, S.; Orr, E. C.; Fabian, I.; van Eldik, R.; Eyring, E. M. J. Chem. Soc., Dalton Trans. 1994, 2497.
- (202) Burgess, J.; Smith, A. E. Transition Met. Chem. 1987, 12, 140. (203) Laurenczy, G.; Lukas, F.; Roulet, R. Organometallics 1996, 15,
- 848. (204) Kondo, Y.; Ishikawa, M.; Ishihara, K. Inorg. Chim. Acta 1996, 241. 81.
- (205) Jestin, J.-L.; Chottard, J.-C.; Frey, U.; Laurenczy, G.; Merbach, A. E. Inorg. Chem. 1994, 33, 4277.

- (206) Schmülling, M.; Lippert, B.; van Eldik, R. Inorg. Chem. 1994,
- (207) Berglund, J.; Voigt, R.; Franaeus, S.; Elding, L. I. Inorg. Chem. **1994**, *33*, 3346.
- (a) Schmülling, M.; Grove, D. M.; van Koten, G.; van Eldik, R.; Veldman, N.; Spek, A. L. *Organometallics* **1996**, *15*, 1384. (b) Schmülling, M.; Ryabov, A. D.; van Eldik, R. *J. Chem. Soc.*, Dalton Trans. 1994, 1257.
- (209) House, D. A.; van Eldik, R. Inorg. Chim. Acta 1995, 230, 29.
- (210) Reddy, K. B.; van Eldik, R. *Organometallics* **1990**, *9*, 1418. (211) Zhang, S.; Zang, V.; Dobson, G. R.; van Eldik, R. *Inorg. Chem.* **1991**, 30, 355.
- (212) Zhang, S.; Zang, V.; Bajaj, H. C.; Dobson, G. R. *J. Organomet. Chem.* **1990**, *397*, 279.
- (213) Reddy, K. B.; Hoffmann, R.; Konya, G.; van Eldik, R.; Eyring, E. M. Organometallics 1992, 11, 2319.
- (214) Cao, S.; Šhi, Y.; Hollmann, J.; van Eldik, R.; Eyring, E. M. J. Chem. Soc., Dalton Trans. 1996, 1629.
- (215) Reddy, K. B.; Brady, B. R.; Eyring, E. M.; van Eldik, R. *J. Organomet. Chem.* **1992**, *440*, 113.
- Ji, Q.; Eyring, E. M.; van Eldik, R.; Johnston, K. P.; Goates, S. R.; Lee, M. L. *J. Phys. Chem.* **1995**, *99*, 13461.
- (217) Reddy, K. B.; van Eldik, R. *Inorg. Chim. Acta* **1990**, *169*, 13. (218) Cao, S.; Reddy, K. B.; Eyring, E. M.; van Eldik, R. *Organome*tallics **1994**, 13, 91.
- (219) Zang, V.; Zhang, S.; Dobson, C. B.; Dobson, G. R.; van Eldik, R. Organometallics 1992, 11, 1154.
 (220) Rowe, L. M.; Atkinson, G. J. Solution Chem. 1990, 19, 149.
- (221) Rowe, L. M.; Tran, L. B.; Atkinson, G. J. Solution Chem. 1989, 18, 675
- (222) Pipoh, R.; van Eldik, R.; Henkel, G. Organometallics 1993, 12,
- (223) Pipoh, R.; van Eldik, R.; Wang, S. L. B.; Wulff, W. D. Organo-
- metallics 1992, 11, 490. (224) Schneider, K. J.; Neubrand, A.; van Eldik, R.; Fischer, H. Organometallics **1992**, 11, 267.
- (225) Pipoh, R.; van Eldik, R. Organometallics 1993, 12, 2668.
- (226) Cohen, H.; van Eldik, R.; Gaede, W.; Gerhard, A.; Goldstein, S.; Czapski, G.; Meyerstein, D. *Inorg. Chim. Acta* **1994**, *227*, 57. (227) Funahashi, S.; Ishii, M.; Tanaka, M.; Uchiyama, N. *Inorg. Chim.*
- Acta 1987, 128, 169.
- (228) Odiaka, T. I.; van Eldik, R. J. Organomet. Chem. 1992, 438, 131.
- (229) Odiaka, T. I.; van Eldik, R. J. Chem. Soc., Dalton Trans. 1992, 2215.
- (230) Otake, H.; Miyata, A.; Tomiyasu, H. Inorg. Chim. Acta 1990, 168, 153.
- (231)Yoshitani, K.; Kitamura, Y.; Shibata, A. Polyhedron 1994, 13, 2483.
- (232) Kojima, K. Bull. Chem. Soc. Jpn. 1987, 60, 603.
 (233) Kojima, K. Bull. Chem. Soc. Jpn. 1988, 61, 385.

- (234) Matsuda, J.; Kojima, K. *Inorg. Chem.* **1990**, *29*, 138. (235) Crick, I. S.; Tregloan, P. A. *Inorg. Chim. Acta* **1988**, *142*, 291. (236) Trümbach, D.; Kritzenberger, J.; Yersin, H. *Inorg. Chim. Acta* **1994**, 216, 245.
- (237)van Zyl, G. J.; Lamprecht, G. J.; Leipoldt, J. G.; Swaddle, T. W. Inorg. Chim. Acta 1988, 143, 223.
- Venter, J. A.; Leipoldt, J. G.; van Eldik, R. Inorg. Chem. 1991, (238)30. 2207.
- (239) Dücker-Benfer, C.; van Eldik, R.; Canty, A. J. Organometallics **1994**, *13*, 3.
- (240) Ryabov, A. D.; van Eldik, R.; Le Borgne, G.; Pfeffer, M. Organometallics 1993, 12, 1386.
- (241) Isaacs, N. S.; Maksimovic, L.; Rintoul, G. B.; Young, D. J. J. Chem. Soc., Chem. Commun. 1992, 1749.
- (242) Cheung, C. K.; le Noble, W. J.; Merbach, A. E.; Schulman, E. M.; Yamada, H. *J. Am. Chem. Soc.* **1987**, *109*, 7206.
- (243) Pipoh, R.; Martinez, P.; van Eldik, R. Ber. Bunsen-Ges. Phys. Chem. 1993, 97, 1435.
- (244) Neubrand, A.; Poe, A. J.; van Eldik, R. Organometallics 1995, 14, 3249.
- Skauge, A. R. L.; Shalders, R. D.; Swaddle, T. W. *Can. J. Chem.* **1996**, *74*, 1998.
- (246) Usha, A. V.; Atkinson, G. J. Solution Chem. 1992, 21, 477.
 (247) Aizawa, S.; Funahashi, S. Bull. Chem. Soc. Jpn. 1994, 67, 1048.
- (248) Ishihara, K.; Miura, H.; Funahashi, S.; Tanaka, M. Inorg. Chem.
- **1988**, *27*, 1706. (249) Funahashi, S.; Ishihara, K.; Inamo, M.; Tanaka, M. Inorg. Chim.
- Acta 1989, 157, 65. (250) Tanaka, T.; Hida, T.; Funahashi, S.; Tanaka, M. J. Am. Chem.
- Soc. 1991, 113, 1259.
- (251) Ryabov, A. D.; Kuzmina, L. G.; Polyakov, V. A.; Kazankov, G. M.; Ryabova, E. S.; Pfeffer, M.; van Eldik, R. J. Chem. Soc., Dalton Trans. 1995, 999.
- (252) Petovsky, O.; van Eldik, R.; Hushen, P.; Espenson, J. H. J. Chem. Soc., Dalton Trans. 1995, 133.
- (253) Merbach, A. E.; Nielson, R. M.; Turin, E. Inorg. Chim. Acta 1987, 134, 67.
- (254) Ioset, J.; Helm, L.; Merbach, A.; Roulet, R.; Grepioni, F.; Braga, D. Helv. Chim. Acta 1989, 71, 1458.

- (255) Kitamura, Y.; Takamoto, T.; Yoshitani, K. Inorg. Chem. 1988,
- 27, 1382.
 Safarowic, F. J.; Keister, J. B. Organometallics 1996, 15, 3310.
 Paw, W. I.; Bower, D. K.; Bierdeman, D. J.; Keister, J. B.; Schulman, E. M. J. Coord. Chem. 1996, 39, 199.
 Krassowski, D. W.; Nelson, J. H.; Brower, K. R.; Hauenstein, D.; Jacobsen, R. A. Inorg. Chem. 1988, 27, 4294.
 Keister, J. B.; Frey, U.; Zbinden, D.; Merbach, A. E. Organometallics 1991, 10, 1497.
 Stevan F.: Gonzalez, G.: Lahuerta, P.: Martinez, M.: Peris, F.:
- (260) Estevan, F.; Gonzalez, G.; Lahuerta, P.; Martinez, M.; Peris, E.; van Eldik, R. *J. Chem. Soc., Dalton Trans.* **1996**, 1045.
- (261) Kiplinger, J. L.; Richmond, T. G.; Arif, A. M.; Dücker-Benfer, ; van Eldik, R. Organometallics 1996, 15, 1545
- (262) Orlandi, A.; Frey, U.; Suardi, G.; Merbach, A. E.; Roulet, R. *Inorg. Chem.* **1992**, *31*, 1304.
- Laurenczy, G.; Bondietti, G.; Merbach, A. E.; Moullet, B.; Roulet, R. Helv. Chim. Acta 1994, 77, 547.
- Virtanen, P. O.; Kuikkanen, T.; Rauma, T. Finn. Chem. Lett. 1987, 14, 162.
- van Eldik, R.; Gaede, W.; Cohen, H.; Meyerstein, D. Inorg. Chem. **1992**, *31*, 3695.
- (266) Gaede, W.; van Eldik, R. Inorg. Chem. 1994, 33, 2204.
- Gaede, W.; Gerhard, A.; van Eldik, R.; Cohen, H.; Meyerstein, D. *J. Chem. Soc., Dalton Trans.* **1993**, 2065.
- Sachinidis, J. I.; Shalders, R. D.; Tregloan, P. A. Inorg. Chem. **1996**, 35, 2497.
- Anderson, K. A.; Wherland, S. Inorg. Chem. 1991, 30, 624.
- Prinsloo, F. F.; Pienaar, J. J.; van Eldik, R. J. Chem. Soc., Dalton Trans. 1996, 4393
- Spiccia, L.; Swaddle, T. W. Inorg. Chem. 1987, 26, 2265.
- (272) Stebler, M.; Nielson, R. M.; Siems, W. F.; Hunt, J. P.; Dodgen, H. W.; Wherland, S. *Inorg. Chem.* **1988**, *27*, 2893.
- (273) Feig, A. L.; Becker, M.; Schindler, S.; van Eldik, R.; Lippard, S. J. Inorg. Chem. **1996**, *35*, 2589. (274) Zang, V.; van Eldik, R. Inorg. Chem. **1990**, *29*, 1705.
- (275) Grace, M. R.; Takagi, H.; Swaddle, T. W. Inorg. Chem. 1994, 33, 1915.
- (276) Lewis, N. A.; McNeer, R. R.; Taveras, D. V. Inorg. Chim. Acta **1994**, 225, 89.
- (277) Kagayama, N.; Sekiguchi, M.; Inada, Y.; Takagi, H. D.; Funahashi, S. *Inorg. Chem.* **1994**, *33*, 1881. (278) Bänsch, B.; Martinez, P.; Zuluaga, J.; Uribe, D.; van Eldik, R.
- Z. Phys. Chem. 1991, 170, 59.
- (279) Bänsch, B.; Martinez, P.; Uribe, D.; Zuluaga, J.; van Eldik, R.
- [1] Balisti, D., Waltheld, T., Chibe, D., Zhidaga, J., Vall Eldik, R. Inorg. Chem. 1991, 30, 4555.
 [280] Heiber-Langer, I.; Hooper, A. B.; Balny, C. Biophys. Chem. 1992, 43. 265.
- (281) Hubbard, C. D.; Bajaj, H. C.; van Eldik, R.; Burgess, J.; Blundell,
- N. J. Inorg. Chim. Acta **1991**, 183, 1. (282) Doine, H.; Swaddle, T. W. Can. J. Chem. **1988**, 66, 2763.
- (282) Doine, H.; Swaddie, I. W. Can. J. Chem. 1906, 60, 2703.
 (283) Khoshtariya, D. E.; Billing, R.; Ackermann, M.; van Eldik, R. J. Chem. Soc., Faraday Trans. 1995, 91, 1625.
 (284) Kirchner, K.; Dang, S.-Q.; Stebler, M.; Dodgen, H. W.; Wherland,
- S.; Hunt, J. P. *Inorg. Chem.* **1989**, 28, 3604.
- Blundell, N. J.; Burgess, J.; Hubbard, C. D. Inorg. Chim. Acta **1989**, *155*, 165.
- Doine, H.; Whitcombe, T. W.; Swaddle, T. W. Can. J. Chem. **1992**, *70*, 81.
- Jolley, W. H.; Stranks, D. R.; Swaddle, T. W. Inorg. Chem. 1990,
- Takagi, H.; Swaddle, T. W. Inorg. Chem. 1992, 31, 4669.
- Martinez, M.; Pitarque, M.-A.; van Eldik, R. J. Chem. Soc., Dalton Trans. 1994, 3159
- van Eldik, R.; Cohen, H.; Meyerstein, D. Angew. Chem., Int. Ed. Engl. 1991, 103, 1177.
- (291)van Eldik, R.; Cohen, H.; Meyerstein, D. Angew. Chem. 1991, 103, 1177
- (292) Zhang, M.; van Eldik, R.; Espenson, J. H.; Bakac, A. Inorg. Chem. **1994**, *33*, 130.
- Martinez, M.; Pitarque, M.-A.; van Eldik, R. J. Chem. Soc., Dalton Trans. **1996**, 2665.
- Guardado, P.; van Eldik, R. Inorg. Chem. 1990, 29, 3473.
- (295) Martinez, M.; Pitarque, M.-A. J. Chem. Soc., Dalton Trans. 1995,

- (296) Krack, I.; van Eldik, R. Inorg. Chem. 1989, 28, 851.
 (297) Park, Y. C.; Kim, S. S. J. Korean Chem. Soc. 1989, 33, 273.
 (298) Krack, I.; van Eldik, R. Inorg. Chem. 1990, 29, 1700.
 (299) Shalders, R. D.; Swaddle, T. W. Inorg. Chem. 1995, 34, 4815.
 (300) Jolley, W. H.; Stranks, D. R.; Swaddle, T. W. Inorg. Chem. 1990,

- (301) Doine, H.; Swaddle, T. W. *Inorg. Chem.* 1991, 30, 1858.
 (302) Grace, M. R.; Swaddle, T. W. *Inorg. Chem.* 1993, 32, 5597.
 (303) Bänsch, B.; Martinez, P.; van Eldik, R. *J. Phys. Chem.* 1992, 96, 234.
- (304) Murguia, M. A.; Wherland, S. Inorg. Chem. 1991, 30, 139.
- (305) Ebihara, M.; Sasaki, Y.; Saito, K.; Tero-Kubota, S. Bull. Chem. Soc. Jpn. **1987**, 60, 391.
- (306) bin Ali, R.; Blandamer, M. J.; Burgess, J.; Guardado, P.; Sanchez, F. Inorg. Chim. Acta 1987, 131, 59.

- (307) Endo, K.; Nagasawa, A.; Ninomiya, T.; Saito, K.; Sasaki, Y. Inorg.
- Chem. 1987, 26, 2164.
 (308) Meshulam, A.; Cohen, H.; van Eldik, R.; Meyerstein, D. Inorg. Chem. 1992, 31, 2151.
- van Eldik, R.; Cohen, H.; Meshulam, A.; Meyerstein, D. Inorg.
- Chem. 1990, 29, 4156.
 (310) Goldstein, S.; Czapski, G.; van Eldik, R.; Cohen, H.; Meyerstein, D. J. Phys. Chem. 1991, 95, 1282.
- (311) Becker, M.; Schindler, S.; van Eldik, R. *Inorg. Chem.* **1994**, *33*,
- (312) Cohen, H.; van Eldik, R.; Masarwa, M.; Meyerstein, D. Inorg.
- Chim. Acta 1990, 177, 31. (313) Doine, H.; Yano, Y.; Swaddle, T. W. Inorg. Chem. 1989, 28, 2319.
- (314) Goldstein, S.; Czapski, G.; Cohen, H.; Meyerstein, D.; van Eldik, R. *Inorg. Chem.* **1994**, *33*, 3255.
- (315) Lewis, N. A.; Obeng, Y. S.; Taveras, D. V.; van Eldik, R. J. Am. Chem. Soc. 1989, 111, 924.
- (316) Kirchner, K.; Dodgen, H. W.; Wherland, S.; Hunt, J. P. Inorg. Chem. 1989, 28.
- (317) Doine, H.; Swaddle, T. W. *Inorg. Chem.* **1988**, *27*, 665.(318) Anderson, K. A.; Kirchner, K.; Dodgen, H. W.; Hunt, J. P.; Wherland, S. Inorg. Chem. 1992, 31, 2605.
- (319) Hubbard, C. D.; Gerhard, A.; van Eldik, R. Inorg. Chem. 1991, *30*, 5023.
- (320) Franklin, T. C.; Mathew, S. A. J. Electrochem. Soc. 1989, 136, 3627
- (321) Franklin, T. C.; Mathew, S. A. J. Electrochem. Soc. 1987, 134,
- (322) Gaede, W.; van Eldik, R. Inorg. Chim. Acta 1994, 215, 173.
- Gaede, W.; van Eldik, R.; Cohen, H.; Meyerstein, D. Inorg. Chem. **1993**, 32, 1997.
- (324) Cohen, H.; Gaede, W.; Gerhard, A.; Meyerstein, D.; van Eldik, R. Inorg. Chem. 1992, 31, 3805.
- (325) Gamelkoorn, H. J.; de Bolster, M. W. G.; Balt, S. Recl. Trav. Chim. Pays-Bas 1992, 111, 178.
- (326) Gerards, L. E. H.; de Bolster, M. W. G.; Balt, S. Inorg. Chim. Acta 1992, 192, 287.
- (327) de Bolster, M. W. G.; Kranenburg, R. A. C. Inorg. Chim. Acta **1991**, 183, 119.
- (328) Wolowiec, S.; Balt, S.; de Bolster, M. W. G. Inorg. Chim. Acta 1991, 181, 131.
- (329) Wen-Fu, F.; van Eldik, R. *Inorg. Chim. Acta* **1996**, *251*, 341. (330) Friesen, D. A.; Lee, S. H.; Lilie, J.; Waltz, W. L.; Vincze, L. *Inorg.* Chem. 1991, 30, 1975.
- (331) Wieland, S.; Reddy, K. B.; van Eldik, R. Organometallics 1990, 9, 1802
- (332) Wieland, S.; van Eldik, R. *J. Phys. Chem.* **1990**, *94*, 5865. (333) Ryba, D. W.; van Eldik, R.; Ford, P. C. *Organometallics* **1993**,
- *12*. 104.
- (334) Fetterolf, M. L.; Offen, H. W. Inorg. Chem. 1987, 26, 1070.
- (335) Wieland, S.; van Eldik, R.; Crane, D. R.; Ford, P. C. *Inorg. Chem.* **1989**, *28*, 3663.
- Wieland, S.; van Eldik, R. J. Chem. Soc., Chem. Commun. 1989, (336)367.
- Rossenaar, B. D.; van der Graaf, T.; van Eldik, R.; Langford, C. H.; Stufkens, D. J.; Vleck, A. *Inorg. Chem.* **1994**, *33*, 2865. (337)
- (338) McGarvey, J. J.; Lawthers, I.; Heremans, K.; Toftlund, H. *Inorg.* Chem. 1990, 29, 252
- Crane, D. R.; Ford, P. C. J. Am. Chem. Soc. 1990, 112, 6871.
- (340) Wieland, S.; van Eldik, R. J. Chem. Soc., Chem. Commun. 1989, 367
- (341) Maupin, C. L.; Meskers, S. C. J.; Dekkers, H. P. J. M.; Riehl, J. P. J. Chem. Soc., Chem. Commun. 1996, 2457.
- (342) Friesen, D. A.; Lee, S. H.; Nashiem, R. E.; Mezyk, S. P.; Waltz, W. L. Inorg. Chem. 1995, 34, 4026.
- (343) Friesen, D. A.; Lee, S. H.; Lilie, J.; Waltz, W. L.; Vincze, L. Inorg. Chem. 1991, 30, 1975.
- (344) Vincze, L.; Friesen, D. A. Inorg. Chem. 1992, 31, 4950.
- (345) Crane, D. R.; Ford, P. C. *Inorg. Chem.* **1993**, *32*, 2391. (346) Crane, D. R.; DiBenedetto, J.; Palmer, C. E. A.; McMillin, D. R.;
- Ford, P. C. *Inorg. Chem.* **1988**, *27*, 3698. (347) Crane, D. R.; Ford, P. C. *J. Am. Chem. Soc.* **1991**, *113*, 8510. (348) Hiraga, T.; Kitamura, N.; Kim, H.-B.; Tazuke, S.; Mori, N. *J.*
- Phys. Chem. 1989, 93, 2940.
- (349) Fetterolf, M. L.; Offen, H. W. *J. Phys. Chem.* **1988**, *92*, 3437. (350) Fetterolf, M. L.; Ford, P. C.; Friedman, A. E.; Yang, Y. Y.; Offen,
- H. J. Phys. Chem. 1988, 92, 3760.
- (351) Prinsloo, F. F.; Meier, M.; van Eldik, R. Inorg. Chem. 1994, 33,
- (352) Meier, M.; van Eldik, R. Inorg. Chem. 1993, 32, 2635.
- (353) Stochel, G.; van Eldik, R.; Kunkley, H.; Vogler, A. Inorg. Chem. **1989**, 28, 4314.
- (354) Stochel, G.; van Eldik, R. Inorg. Chem. 1990, 29, 2075.
- (355) Prinsloo, F. F.; Breet, E. L. J.; van Eldik, R. J. Chem. Soc., Dalton Trans. 1995, 685.
- (356) Projahn, H.-D.; Schindler, S.; van Eldik, R.; Fortier, D. G.; Andrew, C. R.; Sykes, A. G. *Inorg. Chem.* 1995, *34*, 5935.
 (357) Lloyd, C. R.; Eyring, E. M.; Ellis, W. R. *J. Am. Chem. Soc.* 1995,
- 117. 11993.

- (358) Projahn, H.-D.; Dreher, C.; van Eldik, R. J. Am. Chem. Soc. 1990, 112. 17
- (359) Taube, D. J.; Projahn, H.-D.; van Eldik, R.; Magde, D.; Traylor, T. G. J. Am. Chem. Soc. 1990, 112, 6880.
- (360) Projahn, H.-D.; van Eldik, R. *Inorg. Chem.* 1991, *30*, 3288.
 (361) Adachi, S.; Morishima, I. *J. Biol. Chem.* 1989, *264*, 18896.
 (362) Unno, M.; Ishimori, K.; Morishima, I. *Biochemistry* 1991, *30*,
- 10679.
- (363)Unno, M.; Ishimori, K.; Morishima, I. Biochemistry 1990, 29, 10199.
- (364)Traylor, T. G.; Luo, J.; Simon, J. A.; Ford, P. C. J. Am. Chem. Soc. 1992, 114, 4340.
- Balny, C.; Travers, F. Biophys. Chem. 1989, 33, 237.
- Lange, R.; Heiber-Langer, I.; Bonfils, C.; Fabre, I.; Negishi, M.; Balny, C. *Biophys. J.* **1994**, *66*, 89.
- Unno, M.; Ishimori, K.; Ishimura, Y.; Morishima, I. Biochemistry **1994**, *33*, 9762.
- Balny, C.; Saldana, J.-L.; Dahan, N. Anal. Biochem. 1987, 163,
- Zhang, X.; Hubbard, C. D.; van Eldik, R. *J. Phys. Chem.* **1996**, *100*, 9161. (369)
- (370)Kornblatt, J. A.; bon Hoa, G. H.; Heremans, K. Biochemistry 1988, 27, 5122.
- Kornblatt, J. A.; bon Hoa, G. H.; Eltis, L.; Mauk, A. G. J. Am. Chem. Soc. 1988, 110, 5909.
- (372) Meier, M.; van Eldik, R. Inorg. Chim. Acta 1994, 225, 95.
- (373) Meier, M.; van Eldik, R.; Chang, I.-J.; Mines, G. A.; Wuttke, D. S.; Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc. 1994, 116,
- (374) Meier, M.; Sun, J.; Wishart, J. F.; van Eldik, R. Inorg. Chem. **1996**, *35*, 1564.
- (375) Bänsch, B.; Meier, M.; Martinez, P.; van Eldik, R.; Su, L.; Sun,
- J.; Isied, S. S.; Wishart, J. F. *Inorg. Chem.* **1994**, *33*, 4744. Wishart, J. F.; van Eldik, R.; Sun, J.; Su, C.; Isied, S. S. *Inorg.* Chem. 1992, 31, 3986.
- Scarlata, S. F.; Ropp, T.; Royer, C. A. Biochemistry 1989, 28,
- (378) Ruan, K.; Weber, G. *Biochemistry* **1988**, *27*, 3295. (379) Hoganson, C. W.; Windsor, M. W.; Farkas, D. I.; Parson, W. W.
- Biochim. Biophys. Acta 1990, 892, 275. di Primo, C.; Hui Bon Hoa, G.; Douzou, P.; Sligar, S. Eur. J. Biochem. 1990, 193, 383.
- (381) Sun, J.; Wishart, J. F.; van Eldik, R.; Shalders, R. D.; Swaddle, T. W. *J. Am. Chem. Soc.* 1995, 117, 2600.
 (382) Cruanes, M. T.; Rodgers, K. K.; Sligar, S. G. *J. Am. Chem. Soc.* 1992, 114, 9660.
- Langford, C. H.; Gray, H. B. *Ligand Substitution Processes*; W. A. Benjamin: New York, 1965.
- A. Benjamin: New York, 1965.
 (384) Akesson, R.; Petterson, L. G. M.; Sandström, M.; Siegbahn, P. E. M.; Wahlgren, U. *J. Phys. Chem.* 1992, 96, 10773.
 (385) Akesson, R.; Petterson, L. G. M.; Sandström, M.; Siegbahn, P. E. M.; Wahlgren, U. *J. Phys. Chem.* 1993, 97, 3765.
 (386) Akesson, R.; Petterson, L. G. M.; Sandström, M.; Wahlgren, U. J. Am. Chem. Sec. 1994, 142, 8691.
- J. Am. Chem. Soc. **1994**, 116, 8691.
- (387) Akesson, R.; Petterson, L. G. M.; Sandström, M.; Wahlgren, U. J. Am. Chem. Soc. **1994**, 116, 8705.
- (388) Rotzinger, F. P. *J. Am. Chem. Soc.* **1996**, *118*, 6760.
- (389)Hartmann, M.; Clark, T.; van Eldik, R. J. Am. Chem. Soc. 1997, 119, 5867
- (390) Hugi, A. D.; Helm, L.; Merbach, A. E. Helv. Chim. Acta 1985, 68, 508.
- (391)Ducommun, Y.; Newman, K. E.; Merbach, A. E. Inorg. Chem. **1980**, *19*, 3696.
- (392)Ducommun, Y.; Newman, K. E.; Merbach, A. E. J. Am. Chem. Soc. 1979, 101, 5588.
- Sisley, M. J.; Yano, Y.; Swaddle, T. W. Inorg. Chem. 1982, 21, 1141
- (394) Burgess, J.; Hubbard, C. D. Comments Inorg. Chem. 1995, 17,
- Blandamer, M. J.; Burgess, J. Pure Appl. Chem. 1979, 51, 2087.
- Blandamer, M. J.; Burgess, J. Coord. Chem. Rev. 1980, 31, 93.
- Blandamer, M. J.; Burgess, J. Pure Appl. Chem. 1983, 55, 55. Helm, L.; Elding, L. I.; Merbach, A. E. Helv. Chim. Acta 1984, (398)67, 1453.
- (399) Helm, L.; Elding, L. I.; Merbach, A. E. Inorg. Chem. 1985, 24,
- (400) Swaddle, T. W. Inorg. Chem. 1983, 22, 2663.
- (401) Jordan, R. B. *Inorg. Chem.* **1996**, *35*, 3725. (402) Helm, L.; Meier, P.; Merbach, A. E.; Tregloan, P. A. *Inorg. Chim.* Acta **1983**, 73, 1.
 (403) Knight, C. T. G.; Merbach, A. E. *Inorg. Chem.* **1985**, 24, 576.

- (404) Wherland, S. Coord. Chem. Rev. 1993, 123, 169.
 (405) Swaddle, T. W. Can. J. Chem. 1996, 74, 631.
 (406) Swaddle, T. W. Inorg. Chem. 1990, 29, 5017.
 (407) Fu, Y.; Swaddle, T. W. J. Am. Chem. Soc. 1997, 119, 7137.

- (408) Krack, I.; van Eldik, R. *Inorg. Chem.* **1986**, 25, 1743. (409) Seibig, S.; van Eldik, R. *Inorg. Chem.* **1997**, 36, 4115. (410) Sisley, M. J.; Rinderman, W.; van Eldik, R.; Swaddle, T. W. *J.* Am. Chem. Soc. 1984, 106, 7432.

- (411) Ishihara, K.; Swaddle, T. W. Can. J. Chem. 1986, 54, 2168.
 (412) Endicott, J. F.; Ryu, C. K. Comments Inorg. Chem. 1987, 6, 91.
 (413) Manuta, D. M.; Lees, A. J. Inorg. Chem. 1986, 25, 1354.
 (414) van Dijk, H. K.; Servaas, P. C.; Stufkens, D. J.; Oskam, A. Inorg.

- (414) Vali Dijk, H. R., Set Vads, F. C., Stulkeris, D. J., Oskalii, A. Holg. Chim. Acta 1985, 104, 179.
 (415) Fu, W.-F.; van Eldik, R. Organometallics 1997, 16, 572.
 (416) Fu, W.-F.; van Eldik, R. Inorg. Chem. 1998, 37, 1044.
 (417) Bright, F. V., McNally, M. E. P., Eds. Supercritical Fluid Technology; ACS Symp. Ser. 488; American Chemical Society: Washington, DC, 1093 Washington, DC, 1992. (418) Kiran, E., Levelt Sengers, J. M. H., Eds. *Supercritical Fluids*
- Fundamentals for Application, NATO ASI Series E 273; Kluwer: Dordrecht, 1994.
- (419) Kiran E., Brennecke, J. F., Eds. Supercritical Fluid Engineering Science; ACS Symp. Ser. 514; American Chemical Society: Washington, DC, 1993.

- (420) Saito, S. J. Supercrit. Fluids 1995, 8, 177.
 (421) Jessop, P. G.; Ikariya, T.; Noyori, R. Science 1995, 269, 1065.
 (422) Jessop, P. G.; Hsiao, Y.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. **1996**, 118, 344.
- (423) Brock, E. E.; Oshima, Y.; Savage, P. E.; Barker, J. R. J. Phys. Chem. 1996, 100, 15834.
- Steeper, R. R.; Rice, S. F.; Kennedy, I. M.; Aiken, J. D. J. Phys. Chem. 1996, 100, 184.
- (425) Johnston, K. P.; Haynes, C. Am. Inst. Chem. Eng. J. 1987, 33,
- (426) Ji, Q.; Lloyd, C. R.; Eyring, E. M.; van Eldik, R. J. Phys. Chem.
- A **1997**, 101, 243. (427)Vidugiris, G. J. A.; Markley, J. L.; Royer, C. A. Biochemistry
- **1995**, *34*, 4909. Lin, M.-C.; Macgregor, R. B. *Biochemistry* **1996**, *35*, 11846.
- (429) Homan, R.; Pownall, H. J. J. Am. Chem. Soc. 1987, 109, 4759.
- (430) Rentzeperis, D.; Kupke, D. W.; Marky, L. A. Biopolymers 1993,
- (431) Leibrock, E.; Bayer, P.; Lüdemann, H.-D. Biophys. Chem. 1995,
- (432) Kunugi, S.; Kawada, T.; Kabata, H.; Nomura, A.; Komiyama, M. J. Chem. Soc., Perkin Trans. 2 1991, 747.
- (433) Rau, T.; van Eldik, R. Metal Ions in Biological Systems, Sigel, A., Sigel, H., Eds.; Marcel Dekker: New York, 1996; Vol. 32, p
- (434) Fauenfelder, H.; Alberding, N. A.; Ansari, A.; Braunstein, D.; Cowen, B. R.; Hong, M. K.; Iben, I. E. T.; Johnson, J. B.; Luck, S.; Marden, M. C.; Mourant, J. R.; Ormos, P.; Reinisch, L.; Scholl, R.; Schulte, A.; Shyamsunder, E.; Sorensen, L. B.; Steinbach, P. J.; Xie, A.; Young, R. D.; Yue, K. T. *J. Phys. Chem.* **1990**, *94*, 1024.
- (435) Royer, C. A.; Chakerian, A. E.; Matthews, K. S. Biochemistry 1990, 29, 4959. (436) Pande, C.; Wishnia, A. J. Biol. Chem. 1986, 261, 6272.
- Sato, M.; Ozawa, S.; Ogino, Y. Bull. Chem. Soc. Jpn. 1991, 64, (437)
- (438) Makimoto, S.; Nishida, H.; Taniguchi, Y. Biochim. Biophys. Acta **1989**, *996*, 233.
- (439)
- Masson, P.; Balny, C. *Biochim. Biophys. Acta* **1990**, *1041*, 223. Jung, C.; Ristau, O.; Schulze, H.; Sligar, S. G. *Eur. J. Biochem.* **1996**, *235*, 660. (440)
- Schulze, H.; Hoa, G. H. B.; Jung, C. Biochim. Biophys. Acta 1997, *1338*, 77.
- (442) Kim, J.; Dordick, J. S. Biotechnol. Bioeng. 1993, 42, 772.
- (443) Butz, P.; Greulich, K. O.; Ludwig, H. Biochemistry 1988, 27,
- Balny, C.; Hooper, A. B. Eur. J. Biochem. 1988, 176, 273.
- (445) Meier, M.; van Eldik, R. Chem. Eur. J. 1997, 3, 39.
- (446) Sugiyama, Y.; Takahashi, S.; Ishimori, K.; Morishima, I. J. Am. Chem. Soc. 1997, 119, 8592.
- (447) (a) Mingos, D. M. P.; Rohl, A. L.; Burgess, J. J. Chem. Soc., Dalton Trans. 1993, 423. (b) Viana, C. A. N.; Reis, J. C. R. Pure Appl. Chem. 1996, 68, 1541
- (448) Kang, S. K.; Lam, B.; Albright, T. A.; O'Brian, J. F. New J. Chem. **1991**, *15*, 757
- (449) Rotzinger, F. P. J. Am. Chem. Soc. 1997, 119, 5230.
- (450) Deeth, R. J.; Elding, L. I. Inorg. Chem. 1996, 35, 5019. (451) (a) Kowall, Th.; Foglia, F.; Helm, L.; Merbach, A. E. J. Am. Chem.
- Soc. **1995**, 117, 3790. (b) Kowall, Th.; Foglia, F.; Helm, L.; Merbach, A. E. J. Phys. Chem. **1995**, 99, 13078. (c) Kowall, Th.; Foglia, F.; Helm, L.; Merbach, A. E. Chem. Eur. J. 1996, 2, 285.
- (452) Bleuzen, A.; Foglia, F.; Furet, E.; Helm, L.; Merbach, A. E.; Weber, J. J. Am. Chem. Soc. 1996, 118, 12777
- (453) Sueishi, Y.; Kuwata, K. Chem. Phys. Lett. 1989, 160, 640.(454) Sueishi, Y.; Kuwata, K. Chem. Lett. 1988, 1651.
- (455) Sueishi, Y.; Kuzukawa, M.; Yamamoto, S.; Nishimura, N. Bull. Chem. Soc. Jpn. 1992, 65, 3118.
- (456) Sueishi, Y.; Kuzukawa, M.; Yamamoto, S.; Nishimura, N. *Bull. Chem. Soc. Jpn.* **1991**, *64*, 2188. For spin exchange between ditert-butyl nitroxide radicals in supercritical ethane, see: Randolph, T. W.; Carlier, C. J. Phys. Chem. **1992**, *96*, 5146.
- (457) Sueishi, Y.; Nishimura, N.; Hirata, K.; Kuwata, K. Bull. Chem. Soc. Jpn. 1990, 63, 252.

- (458) Sueishi, Y.; Nishimura, N.; Hirata, K.; Kuwata, K. Bull. Chem. Soc. Jpn. 1988, 61, 4253.
- (459) Okamoto, M.; Tanaka, F.; Teranishi, H. J. Phys. Chem. 1990, 94, 669.
- (460) Okamoto, M.; Tanaka, F. J. Phys. Chem. 1993, 97, 177.
 (461) Schmidt, R.; Seikel, K.; Brauer, H.-D. Ber. Bunsen-Ges. Phys. Chem. 1990, 94, 1100.
- Seikel, K.; Brauer, H.-D. Ber. Bunsen-Ges. Phys. Chem. 1991, (462)95. 900
- (463) Hild, M.; Brauer, H.-D. Ber. Bunsen-Ges. Phys. Chem. 1996, 100, 1210.
- Yasuda, H.; Scully, A. D.; Hirayama, S.; Okamoto, M.; Tanaka, F. *J. Am. Chem. Soc.* **1990**, *112*, 6847. (464)
- Schmidt, R.; Janssen, W.; Brauer, H.-D. J. Phys. Chem. 1989, 93, 466.
- (466)Tanaka, F.; Okamoto, M.; Hirayama, S.; J. Phys. Chem. 1995, 99, 525
- Turro, N, J.; Chung, W.-S.; Okamoto, M. J. Photochem. Photobiol., A: Chem. 1988, 45, 17.
- Nishikawa, M.; Itoh, K.; Holroyd, R. J. Phys. Chem. 1988, 92, 5262.
- (469) Ninomiya, S.; Itoh, K.; Nishikawa, M.; Holroyd, R. J. Phys. Chem. **1993**, *97*, 9488.
- Holroyd, R. A.; Stradowska, E.; Itoh, K.; Nishikawa, M. Radiat. Phys. Chem. 1996, 47, 39.
- (471) Kobayashi, Y. Chem. Phys. Lett. 1990, 172, 307.
 (472) Gillies, D. G.; Mathews, S. J.; Sutcliffe, L. H. Magn. Res. Chem. 1991, 29, 823. See also: Brooks, A. A.; Stejskal, E. O.; Weiss, V. W. J. Chem. Phys. 1973, 58, 4045.
- (473) Gillies, D. G.; Mathews, S. J.; Sutcliffe, L. H. Magn. Res. Chem. **1991**, *29*, 1221. See also: Jonas, J.; Adamy, S. T.; Grandinetti, P. J.; Masuda, Y.; Morris, S. J.; Campbell, D. M.; Li, Y. *J. Phys.* Chem. 1990, 94, 1157. And: Kim, K.; Choi, Y. S.; Yoon, C. J.; Lang, E. J. Korean Chem. Soc. 1992, 36, 33.
- (474) Lilge, D.; Eimer, W.; Dorfmüller, T. J. Chem. Phys. 1987, 86,
- Wakai, C.; Nakahara, M. J. Chem. Phys. 1994, 100, 8347.
- (476) Wakai, C.; Nakahara, M. J. Chem. Phys. 1995, 103, 2025.
 (477) Brower, S. C.; Hayden, L. M. J. Polym. Sci. B: Polym. Phys.
- 1995, 33, 2391. See also: Stock-Schweyer, M.; Meurer, B.; Weill, G. *Polymer* **1994**, *35*, 2072. (478) Bugnon, P.; Lye, P. G.; Abou-Hamdan, A.; Merbach, A. E. *Chem.*
- Commun. 1996, 2787.
- (479) Bugnon, P.; Lye, P. G.; Abou-Hamdan, A.; Merbach, A. E. Chimia 1986, 50, 615. (480) Xie, C.-H.; Campbell, D.; Jonas, J. *J. Chem. Phys.* 1988, *88*, 3396.
- (481) Peng, X.; Jonas, J. J. Chem. Phys. 1990, 93, 2192. See also: Jonas, J.; Peng, X. Ber. Bunsen-Ges. Phys. Chem. 1991, 95, 243.
 (482) Campbell, D. M.; Mackowiak, M.; Jonas, J. J. Chem. Phys. 1992,
- 96, 2717.
- (483) Xie, C.-L.; Campbell, D.; Jonas, J. *J. Chem. Phys.* **1990**, *92*, 3736. (484) Yamada, H.; Mukuno, K.; Umeda, M.; Maeda, T.; Sera, A. *Chem.*
- Lett. **1996**, 437.
- (485) Hara, K.; Yano, H. J. Phys. Chem. 1986, 90, 4265.
- (486) Hara, K.; Akimoto, S.; Suzuki, H. Chem. Phys. Lett. 1990, 175,
- (487) Hara, K.; Yano, H. J. Am. Chem. Soc. 1988, 110, 1911.
 (488) Hara, K.; Suzuki, H. J. Phys. Chem. 1990, 94, 1079.
- (489) Hara, K.; Kiyotani, H.; Kajimoto, O. J. Chem. Phys. 1995, 103, 5548. See also: Hara, K.; Kiyotani, H.; Bulgarevich, D. S. Chem. Phys. Lett. 1995, 242, 455.
- (490) Bulgarevich, D. S.; Kajimoto, O.; Hara, K. J. Phys. Chem. 1995, 99, 13356. For a related work on crystal violet, see: Ben-Amotz, D.; Jeanloz, R.; Harris, C. B. *J. Chem. Phys.* **1987**, *86*, 6119.
- (491) Hara, K.; Bulgarevich, D. S.; Kajimoto, O. J. Chem. Phys. 1996, *104*, 9431.
- (492) Hara, K.; Bulgarevich, D. S.; Kajimoto, O. Ber. Bunsen-Ges. Phys. Chem. **1997**, 101, 1443.
- Hara, K.; Akimoto, S. *High Pressure Res.* **1992**, *11*, 55. See also: Hara, K.; Akimoto, S. *J. Phys. Chem.* **1991**, *95*, 5811.
- (494) Asano, T.; Okada, T.; Herkstroeter, W. G. J. Org. Chem. 1989, 54, 379. (495) Asano, T.; Matsuo, K.; Sumi, H. Bull. Chem. Soc. Jpn. 1997,
- 70, 239. See also: Cosstick, K.; Asano, T.; Ohno, N. High Pressure Res. 1992, 11, 37.
- (496) Asano, T.; Furuta, H.; Sumi, H. J. Am. Chem. Soc. 1994, 116, 5545.
- (497) Asano, T.; Cosstick, K.; Furuta, H.; Matsuo, K.; Sumi, H. Bull. Chem. Soc. Jpn. 1996, 69, 551.
- Asano, T.; Furuta, H.; Hofmann, H.-J.; Cimiraglia, R.; Tsuno, Y.; Fujio, M. *J. Org. Chem.* **1993**, *58*, 4418.
- Swaddle, T. W.; Doine, H.; Kinrade, S. D.; Sera, A.; Asano, T.; Okada, T. *J. Am. Chem. Soc.* **1990**, *112*, 2378. Asano, T.; Sumi, H. *High Pressure Science and Technology-1993*;
- Schmidt, S. C., Shaner, J. W., Samara, G. A., Ross, M., Ed.; AIP Press: New York, NY, 1993; p 1325.

 (501) Neuman, R. C.; Berge, C. T.; Binegar, G. A.; Adam, W.; Nishizawa, Y. *J. Org. Chem.* **1990**, *55*, 4564.

 (502) Asano, T.; Okada, T. *J. Org. Chem.* **1988**, *53*, 3606.

- (503) Okamoto, M. J. Phys. Chem. 1990, 94, 8182.
- (504) Tamura K.; Abe, M.; Terai, M. J. Chem. Soc., Faraday Trans. 1 1989, 85, 1493.
- Chan, I. Y.; Wong, C. M.; Stehlik, D. Chem. Phys. Lett. 1994, (505)219, 187,
- (506) Bromberg, S. E.; Chan, I. Y.; Schilke, D. E.; Stehlik, D. J. Chem.
- (506) Bromberg, S. E.; Chan, I. I., Schike, D. E., Stehnk, D. J. Chem. Phys. 1993, 98, 6284.
 (507) Turro, N. J.; Okamoto, M.; Gould, I. R.; Moss, R. A.; Lawrynowicz, W.; Hadel, L. M. J. Am. Chem. Soc. 1987, 109, 4973.
 (508) Jenner, G. New J. Chem. 1991, 15, 897.
 (509) Isaacs, N. S.; Maksimovic, L.; Laila, A. J. Chem. Soc., Perkin Transport of the April 2004, 405.
- Trans. 2 1994, 495.
- (510) Zhulin, V. M.; Kabotyanskaya, E. B.; Kel'tseva, M. V.; Bogdanov, V. S.; Koreshkov, Yu. D. Izv. Akad. Nauk SSSR, Ser. Khim. **1990**, 2651.
- (511) Zhulin, V. M.; Bogdanov, V. S.; Ostval'd, G. V.; Kabotyanskaya, E. B.; Koreshkov, Yu. D. Dokl. Akad. Nauk, SSSR 1989, 310, 362. Reaction volumes in benzene and acetonitrile are also reported.
- (512) Buback, M.; Tost, W.; Tietze, L. F.; Voss, E. Chem. Ber. 1988, *121*, 781.
- (513) Tietze, L. F.; Hübsch, T.; Ott, C.; Kuchta, G.; Buback, M. Liebigs Ann. **1995**, 1.
- (514) Buback, M.; Kuchta, G.; Niklaus, A.; Henrich, M.; Rothert, I.; Tietze, L. F. Liebigs Ann. 1996, 1151.
- (515) Buback, M.; Tost, W.; Hübsch, T.; Voss, E.; Tietze, L. F. Chem. Ber. 1989, 122, 1179. See also: Tietze, L. F.; Hübsch, T.; Voss, E.; Buback, M.; Tost, W. J. Am. Chem. Soc. 1988, 110, 4065.
- (516) Tietze, L. F.; Hübsch, T.; Oelze, J.; Ott, C.; Tost, W.; Wörner, G.; Buback, M. Chem. Ber. 1992, 125, 2249.
- (517) Buback, M.; Gerke, K.; Ott, C.; Tietze, L. F. Chem. Ber. 1994, 127, 2241.
- (518) Buback, M.; Abeln, J.; Hübsch, T.; Ott, C.; Tietze, L. F. Liebigs Ann. 1995, 9. The pressure effect on the overall rate at 60 °C is also reported.
- (519) Klärner, F.-G.; Schröer, D. Chem. Ber. 1989, 122, 179.
- (520) Diedrich, M. K.; Hochstrate, D.; Klärner, F.-G.; Zimny, B. Angew. Chem., Int. Ed. Engl. **1994**, *33*, 1079. (521) Zhulin, V. M.; Ostval'd, G. V.; Bogdanov, V. S.; Kabotyanskaya,
- E. B.; Koreshkov, Yu. D.; Kondrat'eva, G. Ya. Dokl. Akad. Nauk SSSR **1988**, *302*, 1408.
- (522) Beck, K.; Hünig, S.; Klärner, F.-G.; Kraft, P.; Artschwager-Perl, U. *Chem. Ber.* **1987**, *120*, 2041.
 (523) Zhulin, V. M.; Ostval'd, G. V.; Bogdanov, V. S.; Kondrat'eva, G.
- Ya.; Zhuravleva, E. B. Izv. Akad. Nauk SSSR, Ser. Khim. 1987, 1678.
- (524) Zhulin, V. M.; Kel'tseva, M. V.; Bogdanov, V. S.; Koreshkov, Yu. D.; Kabotyanskaya, E. B. Izv. Akad. Nauk SSSR, Ser. Khim. 1990, 525
- (525) Jenner, G. New J. Chem. 1997, 21, 1085.
- (526) Klärner, F.-G.; Krawczyk, B.; Ruster, V.; Deiters, U. K. *J. Am. Chem. Soc.* **1994**, *116*, 7646. See also, Klärner, F.-G.; Ruster, V.; Zimny, B.; Hochstrate, D. High Pressure Res. 1991, 7, 133 and Klärner, F.-G.; Krawczyk, B.; Ruster, V.; Deiters, U. K. *High Pressure Res.* **1994**, *13*, 1.
- (527) Baran, J.; Mayr, H.; Ruster, V.; Klärner, F.-G. J. Org. Chem. **1989**, *54*, 5016.

- (528) Isaacs, N. S.; Laila, A. J. Phys. Org. Chem. 1994, 7, 178.
 (529) Isaacs, N. S.; El-Din, G. N. Tetrahedron 1989, 45, 7083.
 (530) Zhulin, V. M.; Zhuravleva, E. B. Dokl. Akad. Nauk, SSSR 1986, *290*, 383.
- (531) Zhulin, V. M.; Zhuravleva, E. B.; Makarova, Z. G.; Krayushkin, M. M. Izv. Akad. Nauk SSSR, Ser. Khim. 1987, 1951.
- (532) Okamoto, M. J. Phys. Chem. 1992, 96, 245.
- (533) Hild, M.; Brauer, H.-D. Ber. Bunsen-Ges. Phys. Chem. 1996, 100, 1814.
- (534) Jenner, G.; Papadopoulos, M. Tetrahedron Lett. 1996, 37, 1417.
- (535) Doering, W. E.; Birladeanu, L.; Sarma, K.; Teles, J. H.; Klärner, F.-G.; Gehrke, J.-S. J. Am. Chem. Soc. 1994, 116, 4289.
- (536) El'yanov, B.; Gonikberg, E. M.; Jenner, G. J. Chem. Soc., Perkin Trans. 2 1992, 137. New values of the activation volume based on the previously reported kinetic results (Jenner, G.; Papadopoulos, M. *J. Org. Chem.* **1982**, *47*, 4201) are also given. See also: Ben Salem, R.; Jenner, G. *Tetrahedron Lett.* **1986**, *27*, 1575.
- (537) Jenner, G.; Ben Salem, R.; El'yanov, B.; Gonikberg, E. M. J. Chem. Soc., Perkin Trans. 2 1989, 1671. (538) Sugiyama, S.; Mori, A.; Kato, N.; Takeshita, H. Bull. Chem. Soc.
- *Jpn.* **1989**, *62*, 1143.
- (539) Pajak, J.; Brower, K. R. J. Energy Fuels 1987, 1, 363.
- (540) Isaacs, N. S.; van Eldik, R. J. Chem. Soc., Perkin Trans. 21997,
- (541) Nishimura, N.; Miyake, J.; Sueishi, Y. Bull. Chem. Soc. Jpn. **1989**, *62*, 1777. Pressure effects on the reverse reaction were also measured.
- (542) Sueishi, Y.; Sugiyama, Y.; Yamamoto, S.; Nishimura, N. J. Phys.
- Org. Chem. 1993, 6, 478. Sueishi, Y.; Danjo, K.; Yamamoto, S.; Nishimura, N. Chem. Express 1991, 6, 459.
- (544) Sueishi, Y.; Kuwata, K. Chem. Phys. Lett. 1988, 151, 439.

- (545) Yoshimura, Y.; Kimura, Y.; Nakahara, M. Ber. Bunsen-Ges. Phys. Chem. 1988, 92, 1095.
- Yoshimura, Y.; Nakahara, M. Ber. Bunsen-Ges. Phys. Chem. (546)**1988**, 92, 50.
- Zhulin, V. M.; Khueidzha, I.; Kabotyanskaya, E. B.; Koreshkov, Yu. D. *Izv. Akad. Nauk SSSR, Ser. Khim.* **1990**, 1911. (547)
- Kessler, W.; Luft, G.; Zeiss, W. Ber. Bunsen-Ges. Phys. Chem. **1997**, 101, 698.
- (549) Buback, M.; Hinton, C. Z. Phys. Chem. 1996, 193, 61.
- Naud, D. L.; Brower, K. R. J. Org. Chem. 1992, 57, 3303. Decompositions of cyclohexanol nitrate in toluene, propylene glycol dinitrate in tetralin and toluene, nitroglycerin in toluene, and 1,3,5-cyclohexanetriol trinitrate in toluene were also studied.
- (551) Piermarini, G. J.; Block, S.; Miller, P. J. J. Phys. Chem. 1987, 91, 3872.
- (552) Hiskey, M. A.; Brower, K. R.; Oxley, J. C. J. Phys. Chem. 1991, 95, 3955.
- (553) Oxley, J. C.; Hiskey, M.; Naud, D.; Szekeres, R. J. Phys. Chem. 1992, 96, 2505.
- (554) Piermarini, G. J.; Block, S.; Miller, P. J. J. Phys. Chem. 1989, 93, 457.
- (555) Naud, D. L.; Brower, K. R. High Pressure Res. 1992, 11, 65.
- (556) Markaryan, R. E.; Kovarskii, A. L.; Tshetinin, V. G. *J. Solid State Chem.* **1991**, *94*, 1. See also: Szöcs, F.; Klimova, M. *Polymer* **1992**, 33, 881.
- Kishore, K.; Paramasivam, S.; Sandhya, T. E. Macromolecules **1996**, *29*, 6973.
- Itsuki, H.; Yamamoto, H.; Okazaki, H.; Terasawa, S. J. Chem. Soc., Perkin Trans. 2 **1990**, 1545.
- Itsuki, H.; Kuwabara, M.; Hayase, K.; Terasawa, S. J. Chem. Soc., Perkin Trans. 2 **1989**, 563.
- (560) Kyong, J. B.; Park, B. C.; Kwun, O. C. J. Korean Chem. Soc. **1997**, 41, 443.
- (561) Ho, N.; le Noble, W. J. J. Org. Chem. 1989, 54, 2018.
- (562) Kwun, O. C.; Kim, J. R.; Kyong, J. B.; Lee, Y. H.; Kim. J. C. J. Korean Chem. Soc. 1996, 40, 327.
- (563) Kim, J. R.; Kyong, J. B.; Kim, J. C. J. Basic Sci. (Inst. Basic Sci., Hanyang University) **1990**, *9*, 121. (564) Kyong, J. B.; Kevill, D. N.; Kim, J. C. J. Korean Chem. Soc. **1993**,
- *37*. 3.
- (565) Chung, W.-S.; Turro, N. J.; Gould, I. R.; Farid, S. J. Phys. Chem. 1991, 95, 7752.
 (566) Yoh, S.-D.; Park, J.-H.; Lee, K.-A.; Han, I.-S. Bull. Chem. Soc.
- *Jpn.* **1987**, *60*, 1149.
- Yoh, S.-D.; Park, K.-H.; Kim, S.-H.; Park, J.-H. Daehan Hwahak (567)Hwoejee **1988**, *32*, 48. Yoh, S.-D.; Kim, S.-H.; Park, J.-H. *J. Chem. Soc., Perkin Trans.*
- 2 **1987**, 1439.
- (569) Yoh, S.-D.; Park, K.-H.; Kim, S.-H.; Cheong, D.-Y. Tetrahedron **1989**, 45, 3321.
- (570) Choi, K. J.; Lee, Y. H.; Kyong, J. B.; Kim, J. R. Daehan Hwahak Hwoejee 1988, 32, 291.
- (571) Viana, C. A. N.; Calado, A. R. T.; Pinheiro, L. M. V. J. Phys. Org. Chem. 1995, 8, 63. See also: Viana, C. A. N.; Calado, A. R. T.; Pinheiro, L. M. V. J. Chem. Res. (S) 1992, 6.
- (572) Cheung, C. K.; Wedinger, R. S.; le Noble, W. J. J. Org. Chem. **1989**, *54*, 570.
- (573) Forster, W.; Laird, R. M. J. Chem. Soc., Perkin Trans. 2 1991, 1033.
- (574) Kim, Y. C.; Kyong, J. B.; Kim, S. K.; Koo, D. J. J. Korean Chem. Soc. **1992**, 36, 180.
- (575) Brower, K. R. Organic High Pressure Chemistry, le Noble, W. J., Ed.; Elsevier: Lausanne, Switzerland, 1988; p 213.
- Jenner, G. New J. Chem. 1995, 19, 173.
- Klärner, F.-G.; Kalthof, U.; Gante, J. J. Prakt. Chem. 1997, 339, (577)
- (578) Tamura, K.; Yoshinari, M. Bull. Chem. Soc. Jpn. 1989, 62, 2073.
- (579) Isaacs, N. S.; Coulson, M. J. Phys. Org. Chem. 1996, 9, 639.
 (580) Yamamoto, Y.; Saito, K. J. Chem. Soc., Chem. Commun. 1989,
- 1676.
- (581) Kwun, O. C.; Lee, Y. H.; Jeun. I. S. J. Korean Chem. Soc. 1995, *39*. 350.
- (582) Kwun, O. C.; Lee, Y. H. J. Korean Chem. Soc. 1993, 37, 555.
- (583) Kwun, O. C.; Kyong, J. B.; Lee, Y. H. J. Korean Chem. Soc. 1993,
- (584) Sueishi, Y.; Mukai, T.; Matsumoto, K.; Yamamoto, S.; Nishimura, N. Bull. Chem. Soc. Jpn. **1994**, *67*, 3153. Gomez, M.; Granell, J.; Martinez, M. Organometallics **1997**, *16*,
- Gomez, M.; Granell, J.; Martinez, M. J. Chem. Soc., Dalton Trans. 1998, 37.
- Zhulin, V. M.; Makarova, Z. G.; Klimov, E. M.; Malysheva, N. N.; Kochetkov, N. K. *Izv. Akad. Nauk, SSSR, Ser. Khim.* **1989**,
- Sato, M.; Ozawa, S.; Ogino, Y. J. Phys. Chem. 1987, 91, 5755.
- Sato, M.; Nakatani, J.; Ozawa, S.; Ogino, Y. Nippon Kagaku (589)Kaishi 1988, 1794.
- (590) Sato, M.; Ozawa, S.; Ogino, Y. High Pressure Res. 1990, 2, 87.

- (591) Mabry, S. A.; Lee, B.-S.; Zheng, T.; Jonas, J. J. Am. Chem. Soc. **1996**, 118, 8887.
- (592) Laila, A.; Isaacs, N. S. J. Prakt. Chem. 1996, 338, 691.
- (593) Isaacs, N. S.; Laila, A. H. J. Phys. Org. Chem. 1991, 4, 639.
 (594) Brown, M. C.; Lepree, J. M.; Connors, K. A. Int. J. Chem. Kinet. **1996**, 28, 791
- (595) Coker, A.; Hibbert, F. J. Chem. Res. 1994, 264.
 (596) (a) Munoz, R. C.; Holroyd, R. A. J. Chem. Phys. 1986, 84, 5810. (b) Holroyd, R. A.; Itoh, K.; Nishikawa, M. Chem. Phys. Lett. **1997**, *266*, 227
- (597) Munoz, R. C.; Holroyd, R. A.; Itoh, K.; Nakagawa, K.; Nishikawa, M.; Fueki, K. J. Phys. Chem. 1987, 91, 4639.
- (598) Itoh, K.; Holroyd, R. A.; Nishikawa, M. J. Phys. Chem. B 1998, 102. 3147
- (599) Itoh, K.; Nishikawa, M.; Holroyd, R. A. J. Chem. Phys. 1996, 105, 5510.
- (600) Itoh, K.; Nishikawa, M.; Holroyd, R. A. J. Chem. Phys. 1996, *104*, 1545.
- (601) Chen, P.; Holroyd, R. A. J. Phys. Chem. 1996, 100, 4491.
- (602) Holroyd, R. A.; Schwarz, H. A.; Stradowska, E.; Ninomiya, K.; Itoh, M.; Nishikawa, M. J. Phys. Chem. 1994, 98, 7142.
 (603) Itoh, K.; Holroyd, R. A. J. Phys. Chem. 1990, 94, 8854.
- (604) Itoh, K.; Nishikawa, M.; Holroyd, R. A. J. Phys. Chem. 1993,
- 97, 503.
- (605) Schwartz, H. A. J. Phys. Chem. 1993, 97, 12954.
- (606) Hall, G. E.; Middleton, W. J.; Roberts, J. D. J. Am. Chem. Soc. 1971, 93, 4778 and other papers cited in ref 498.
- (607) Asano, T.; Furuta, H.; Hofmann, H.-J.; Cimiraglia, R.; Tsuno, Y.; Fujio, M. *J. Org. Chem.* **1993**, *58*, 4418. See footnote 8 in ref
- (608) Asano, T.; Okada, T. J. Org. Chem. 1986, 51, 4454. See also earlier papers quoted there and also entries 349-371.
- van Eldik, R.; Kelm, H.; Schmittel, M.; Rüchardt, C. J. Org. Chem. 1985, 50, 2998.
- (610) Firestone, R. A.; Smith, G. M. Chem. Ber. 1989, 112, 1089.
- (611) Kim, S.; Johnston, K. P. Chem. Eng. Commun. 1988, 63, 49.
- (612) Chung, W.-S.; Turro, N. J.; Mertes, J.; Mattay, J. J. Org. Chem. 1989, 54, 4881. Pressure dependence of the total yield of the dimers in the presence of 1,4-dicyanonaphthalene and several
- triplet sensitizers were also reported.

 (613) Dolbier, W. R.; Weaver, S. L. *J. Org. Chem.* **1990**, *55*, 711. See also: Dolbier, W. R.; Seabury, M. J. *J. Am. Chem. Soc.* **1987**, 109, 4393.
- (614) Diedrich, M. K.; Hochstrate, D.; Klärner, F.-G.; Zimny, B. High
- Pressure Res. 1994, 13, 7.
 (615) Buback, M.; Busch, M.; Lovis, K.; Mähling, F.-O. Macromol.
- (616) Buback, M.; Dröge, T.; van Herk, A.; Mähling, F.-O. Macromol. Chem. Phys. 1996, 197, 4119.
 (617) Sera, A.; Takagi, K.; Katayama, H.; Yamada, H. J. Org. Chem.
- 1988, 53, 1157.
 (618) Zhulin, V. M.; Makarova, Z. G.; Klimov, E. M.; Malysheva, N. N.; Kochetkov, N. K. *Dolk. Akad. Nauk SSSR* 1989, 309, 641. See also: Zhulin, V. M.; Makarova, Z. G.; Malysheva, N. N.; Klimov, E. M.; Kochetkov, N. K. *Izv. Akad. Nauk SSSR, Ser. Khim.* **1988**, 1195. Kochetkov, N. K.; Zhulin, V. M.; Klimov, E. M.; Malysheva, N. N.; Makarova, Z. G.; Ott, A. Ya. Carbohydr.
- Res. 1987, 164, 241.
 (619) Zhulin, V. M.; Makarova, Z. G.; Klimov, E. M.; Mal'sheva, N. N.; Kochetkov, N. K. Dokl. Akad. Nauk SSSR 1987, 296, 338.
- (620) Conway, B. E.; Ayranci, E. J. Chem. Thermodyn. 1988, 20, 9. (621) Sijpkes, A. H.; Van Rossum, P.; Raad, J. S.; Somsen, G. J. Chem.
- Thermodyn. 1989, 21, 1061 (622) Herman, M. S.; Goodman, J. L. J. Am. Chem. Soc. 1989, 111,
- (623) Hung, R. R.; Grabowski, J. J. J. Am. Chem. Soc. 1992, 114, 351.
- (624) Schmidt, R.; Schütz, M. Chem. Phys. Lett. 1996, 263, 795.
- (625) Terazima, M.; Hara, T.; Hirota, N. Chem. Phys. Lett. 1995, 246,
- (626) Bonetti, G.; Vecli, A.; Viappiani, C. Chem. Phys. Lett. 1997, 269,
- Morais, J.; Ma, J.; Zimmt, M. B. J. Phys. Chem. 1991, 95, 3885.
- (628) Morais, J.; Zimmt, M. B. J. Phys. Chem. 1995, 99, 8863.
 (629) Yamada, H. Kazuoka, T.; Sera, A. J. Am. Chem. Soc. 1988, 110,
- (630) Tamura, K.; Dan, M.; Moriyoshi, T. J. Chem. Res. (S) 1990, 110.
- (631) Nishimura, N.; Danjo, K.; Sueishi, Y.; Yamamoto, S. Aust. J. Chem. **1988**, 41, 863.
- (632) Cho, T.; Kida, I.; Ninomiya, J.; Ikawa, S. J. Chem. Soc., Faraday Trans. 1994, 90, 103.
- (633) Schulman, E. M.; Dwyer, D. W.; Doetschman, D. C. J. Phys. Chem. 1990, 94, 7308.
- (634) Sueishi, Y.; Sugiyama, Y.; Yamamoto, S.; Nishimura, N. Bull. Chem. Soc. Jpn. 1994, 67, 572.
 (635) Isaacs, N. S.; Rzepa, H. S.; Sheppard, R. N.; Lobo, A. M.;
- Prabhakar, S.; Merbach, A. E. J. Chem. Soc., Perkin Trans. 2 **1987**. 1477.
- Yoshimura, Y.; Nakahara, M. Ber. Bunsen-Ges. Phys. Chem. **1988**. 92. 46.

- (637) Kwun, O. C.; Kim, M. J. Daehan Hwahak Hwoejee 1988, 32, 513.
- (638) Jee, J.-G. *Bull. Chem. Soc. Jpn.* **1987**, *60*, 4483. (639) Nishimura, N.; Osawa, Y.; Kuramoto, K.; Sukemichi, K. *Bull.*
- (640) Nishimura, N.; Iga, S.; Satoh, M.; Yamamoto, S. Bull. Chem. Soc. Jpn. 1992, 65, 2437.
 (641) Letcher, T. M.; Mercer-Chalmers, J. D.; Kay, R. L. Pure Appl.
- Chem. **1994**, 66, 419.
- Yamada, H.; Kazuoka, M.; Moriguchi, N.; Sera, A. Bull. Chem.
- Soc. Jpn. 1993, 66, 3528. (643) Sueishi, Y.; Nishimura, N.; Hirata, K.; Kuwata, K. Chem. Express 1989, 4, 567.
- (644) Kimura, Y.; Yoshimura, Y.; Nakahara, M. Chem. Lett. 1988, 39.
- (645) Fulton, J. L.; Yee, G. G.; Smith R. D. J. Am. Chem. Soc. 1991, 113, 8327
- (646) Peck, D. G.; Mehta, A. J.; Johnston, K. P. J. Phys. Chem. 1989, 93, 4297.
- (647) Archer, D. G.; Majer, V.; Inglese, A.; Wood, R. H. J. Colloid Interface Sci. 1988, 124, 591.
- (648)Hara, K.; Suzuki, H.; Takisawa, N. J. Phys. Chem. 1989, 93,
- (649)Chung, J.-J.; Lee, S.-W.; Roh, B.-G.; Choi, J.-H. J. Korean Chem. Soc. **1992**, 36, 28.
- Moroi, Y.; Kai, Y.; Murata, Y.; Tanaka, M. J. Jpn. Oil Chem. Soc. **1996**, 45, 833.
- Ikawa, Y.; Tsuru, S.; Murata, Y.; Okawauchi, M.; Shigematsu,
- M.; Sugihara, G. *J. Solution Chem.* **1988**, *17*, 125. Yamanaka, M.; Kaneshina, S. *J. Solution Chem.* **1990**, *19*, 729.
- Cruanes, M. T.; Drickamer, H. G.; Faulkner, L. R. J. Phys. Chem. (653)**1992**, 96, 9888.
- (654) Chung, K.; Takata, T.; Endo, T. *Macromolecules* **1995**, *28*, 3048. (655) Eckert, C. A.; Ziger, D. H.; Johnston, K. P.; Kim, S. *J. Phys.*
- Chem. 1986, 90, 2738.
- (656) Paulaitis, M. E.; Alexander, G. C. Pure Appl. Chem. 1987, 59,
- (657) Ikushima, Y.; Saito, N.; Arai, M. J. Phys. Chem. 1992, 96, 2293.
- Weinstein, R. D.; Renslo, A. R.; Danheiser, R. L.; Harris, J. G.; (658)Tester, J. W. J. Phys. Chem. 1996, 100, 12337.
- (659) Isaacs, N. S.; Keating, N. J. Chem. Soc., Chem. Commun. 1992,
- Johnston, K. P.; Haynes, C. AIChE J. 1987, 33, 2017.
- (661)Srinivas, P.; Mukhopadhyay, M. Ind. Eng. Chem. Res. 1994, 33, 3118.
- (662)Wu, B. C.; Klein, M. T.; Sandler, S. I. Ind. Eng. Chem. Res. 1991, 30. 822
- Kamat, S. V.; Beckman, E. J.; Russel, A. J. J. Am. Chem. Soc. (663)**1993**, *115*, 8845. Narayan, R.; Antal, M. J. *J. Am. Chem. Soc.* **1990**, *112*, 1927.
- (664)Nishikawa, M.; Holroyd, R. A.; Itoh, K. J. Phys. Chem. B 1998, (665)
- 102, 4189,
- Brower, K. R. J. Org. Chem. 1988, 53, 3776. Minier, L. M.; Brower, K. R.; Oxley, J. C. J. Org. Chem. 1991, (667)56, 3306.
- Hrnjez, B. J.; Mehta, A. J.; Fox, M. A.; Johnston, K. P. J. Am.
- Chem. Soc. **1989**, 111, 2662. (669) Randolph, T. W.; Carlier, C. J. Phys. Chem. **1992**, *96*, 5146.
- Brenneke, J. F.; Tomasko, D. L.; Eckert, C. A. J. Phys. Chem. (670)**1990**, *94*, 7692.
- (671) Roberts, C. B.; Chateauneuf, J. E.; Brenneke, J. F. J. Am. Chem. Soc. 1992, 114, 8455.
- (672) Roberts, C. B.; Brenneke, J. F.; Chateauneuf, J. E. AIChE J. 1995, 41, 1306.
- (673) Zhang, J.; Connery, K. A.; Brenneke, J. F.; Chateauneuf, J. E. J. Phys. Chem. 1996, 100, 12394.
- (674) le Noble, W. J. Prog. Phys. Org. Chem. 1967, 5, 207. See p 230
- (675) LeMaster, C. B.; LeMaster, C. L.; Tafazzoli, M.; Suarez, C.; True, N. S. J. Phys. Chem. 1988, 92, 5933.
- (676) Ross, B. D.; True, N. S. J. Am. Chem. Soc. 1983, 105, 4871.(677) Chu, P. S.; True, N. S. J. Phys. Chem. 1985, 89, 2625.
- (678) Chu, P. S.; True, N. S. J. Phys. Chem. 1985, 89, 5613.
- LeMaster, C. B.; LeMaster, C. L.; Suarez, C.; Tafazzoli, M.; True, N. S. J. Phys. Chem. 1989, 93, 3993.
- LeMaster, Č. B.; LeMaster, C. L.; Tafazzoli, M.; Suarez, C.; True, N. S. J. Phys. Chem. 1990, 94, 3461.
- (681) Shtyrlin, Y. G.; Fedorenko, V. Y.; Iskhakova, G. G.; Kiselev, V. D.; Konovalov, A. I. Russ. J. Gen. Chem., Engl. Transl. 1996,
- 66, 484. See also: Kumar, A. J. Org. Chem. **1994**, 59, 4612. (682) Forman, M. A.; Dailey, W. P. J. Am. Chem. Soc. **1991**, 113, 2761 (683) Grieco, P.; Nunes, J. J.; Gaul, M. D. J. Am. Chem. Soc. 1990,
- 112, 4595. (684) Hicks, J. M.; Vandersall, M. T.; Sitzmann, E. V.; Eisenthall, K.
- B. Chem. Phys. Lett. 1987, 135, 413.
- (685) Rettig, W. *Ber. Bunsen-Ges. Phys. Chem.* **1991**, *95*, 259. (686) Kang, T. J.; Jarzeba, W.; Barbara, P. F.; Fonseca, T. *Chem. Phys.* **1990**, 149, 81.
- Barbara, P. F.; Jarzeba, W. Acc. Chem. Res. 1988, 21, 195.
- (688) Hara, K.; Kometani, N.; Kajimoto, O. J. Phys. Chem. 1996, 100, 1488.

- (689) Hara, K.; Kometani, N.; Kajimoto, O. Chem. Phys. Lett. 1994,
- (690) Schroeder, J.; Schwarzer, D.; Troe, J.; Voss, F. J. Chem. Phys. **1990**, *93*, 2393.
- Schroeder, J.; Troe, J.; Vöhringer, P. Chem. Phys. Lett. 1993, (691)*203*, 255.
- (692) Schroeder, J. Ber. Bunsen-Ges. Phys. Chem. 1997, 101, 643.
- (693) Mohschladt, R.; Schroeder, J.; Schwarzer, D.; Troe, J.; Vöhringer, P. J. Chem. Phys. 1994, 101, 7566.
- (694) Schroeder, J.; Schwarzer, D.; Troe, J.; Vöhringer, P. Chem. Phys. Lett. 1994, 218, 43.
- (695) Gehrke, Ch.; Schroeder, J.; Schwarzer, D.; Troe, J.; Voss, F. J. Chem. Phys. 1990, 92, 4805.
- (696) Gehrke, Ch.; Mohrschladt, P.; Schroeder, J.; Troe, J.; Vöhringer, P. J. Chem. Phys. 1991, 152, 45.
- (697) Nikowa, L.; Schwarzer, D.; Troe, J.; Schroeder, J. J. Chem. Phys. 1992, 97, 4827.
- (698) Rice, J. K.; Baronavski, A. P. J. Phys. Chem. 1992, 96, 3359.
- (699) Hara, K.; Ito, N.; Kajimoto, O. J. Phys. Chem. 1997, A101, 2240.
- (700) Kang, T. J.; Etherridge, T.; Jarzeba, W.; Barbara, P. F. J. Phys. Chem. 1989, 93, 1876.
- (701) Kim, S. K.; Fleming, G. R. J. Phys. Chem. 1988, 92, 2168.
 (702) Rothenberger, G.; Negus, D. K.; Hochstrasser, R. M. J. Chem. Phys. 1983, 79, 5360.
- (703) Velsko, S. P.; Fleming, G. R. J. Chem. Phys. 1982, 76, 3553.(704) Keery, K. M.; Fleming, G. R. Chem. Phys. Lett. 1982, 93, 323.
- (705) Sivakumar, N.; Hoburg, E. A.; Waldeck, D. H. J. Chem. Phys. **1989**, 90, 2305.
- Velsko, S. P.; Waldeck, D. H.; Fleming, G. R. J. Chem. Phys. 1983, 78, 249.
- (707)Flom, S. R.; Nagarajan, V.; Barbara, P. F. J. Phys. Chem. 1986, 90. 2085.
- (708) Millar, D. P.; Eisenthal, K. B. J. Chem. Phys. 1985, 83, 5076.
- (709) Browman, R. M.; Eisenthal, K. B.; Miller, D. P. J. Chem. Phys. **1988**, 89, 762.
- (710) Kometani, N.; Kajimoto, O.; Hara, K. J. Phys. Chem. 1997, A101, 4916.
- (711) Salem, L. *Acc. Chem. Res.* **1979**, *12*, 87. (712) Bonacic-Koutecky, V.; Bruckman, P.; Hiberty, P.; Koutecky, J.; Leforestier, C.; Salem, L. Angew. Chem., Int. Ed. Engl. 1975,
- (713) Bonacic-Koutecky, V. J. Am. Chem. Soc. 1978, 100, 396.
 (714) Bonacic-Koutecky, V.; Michl, J. J. Am. Chem. Soc. 1985, 107,
- (715) Bonacic-Koutecky, V.; Koutecky, J.; Michl, J. Angew. Chem., Int. Ed. Engl. **1987**, 26, 170.
- (716) Salem, L.; Bruckman, P. J. Am. Chem. Soc. 1976, 98, 5037.
- (717) Bruni, M. C.; Daudey, J. P.; Langiet, J.; Malrieu, J. P.; Momic-chioli, F. J. Am. Chem. Soc. 1977, 99, 3587.
- (718) Brooks, B. R.; Schaefer, H. F., III. J. Am. Chem. Soc. 1979, 101,
- (719) Bonacic-Koutecky, V.; Buenker, R.; Peyerimhoff, S. J. Am. Chem. Soc. 1979, 101, 5917.
- (720) Malrieu, J. P.; Trinquier, G. Theor. Chim. Acta (Berlin) 1979, *54*, 59
- (721) Orlandi, G.; Palmiere, P.; Poggi, G. J. Am. Chem. Soc. 1979, 101, 348.
- (722) Olbrich, G. Ber. Bunsen-Ges. Phys. Chem. 1982, 86, 209.
- (723) Orlandi, G.; Zerbetto, F. J. Mol. Struct. 1986, 138, 185.
 (724) Troe, J.; Weitzel, K. M. J. Chem. Phys. 1988, 88, 7030.
- (725) Morais, J.; Ma, J.; Zimmt, M. B. J. Phys. Chem. 1991, 95, 3885.
- (726) Waldeck, D. H. Chem. Rev. 1991, 91, 415.
- (727) Fleming, G. R.; Courtney, S. H.; Balk, M. W. J. Statistical Phys. 1986, 42, 83.
- (728)Sundström, V.; Gilbro, T. Chem. Phys. Lett. 1984, 109, 538.
- (729) Schroeder, J.; Schwarzer, D.; Troe, J. Ber. Bunsen-Ges. Phys. Chem. 1990, 94, 1249.
- (730) Schroeder, J.; Troe, J. Chem. Phys. Lett. 1985, 116, 453.
- (731) Schroeder, J. Ber. Bunsen-Ges. Phys. Chem. **1991**, 95, 233.
- (732) Schroeder, J. J. Phys. Cond. Matter 1996, 8, 9379.
 (733) Beutler, T. C.; Beguelin, D. R.; van Gunsteren, W. F. J. Chem. Phys. 1995, 102, 3787.
 (734) Pierotti, R. A. Chem. Rev. 1976, 76, 717.
 (735) Roiss H. Adv. Chem. Phys. 1986, 9, 1

- (735) Reiss, H. *Adv. Chem. Phys.* **1966**, *9*, 1. (736) Hofmann, H.-J.; Asano, T.; Cimiraglia, R.; Bonaccorsi, R. *Bull.* Chem. Soc. Jpn. 1993, 66, 130.
- (737) Cimiraglia, R.; Asano, T.; Hofmann, H.-J. Gazz. Chim. Ital. 1996, *126*, 679
- (738) Jenner, G. Chapter 6 in ref 4.
- (739) El'yanov, B. S.; Vasilvitskaya, E. M. Rev. Phys. Chem. Jpn. 1980,
- (740) Schroeder, J.; Troe, J.; Vöhringer, P. Z. Phys. Chem. 1995, 188,
- (741) Waldeck, D. H.; Lothshaw, W. T.; McDonald, D. B.; Fleming, G. R. Chem. Phys. Lett. 1982, 88, 297.
- (742) McCaskill, J. S.; Gilbert, R. G. Chem. Phys. 1979, 44, 389.
- Schroeder, J.; Schwarzer, D.; Troe, J. Ber. Bunsen-Ges. Phys. Chem. 1990, 94, 1249.

- (744) Kang, T. J.; Etheridge, T.; Jarzeba, W.; Barbara, P. F. J. Phys. Chem. **1989**, *93*, 1876.
- Basilevsky, M. V.; Vener, M. V. J. Mol. Struct. (Theochem.) 1997, 398-399, 81.
- (746) Fröhlich, H. Theory of Dilelectrics; Clarendon Press: Oxford, 1958.
- (747) Bötcher, C. J. F.; Bordewick, P. Theory of Electric Polarization; Elsevier: Amsterdam, 1978; Vol. II.
- Zusman, L. D. Chem. Phys. 1980, 49, 295.
- (749) Ovchinnikova, M. Ya. Khim. Fizika 1985, 4, 3.

- (750) Bagchi, B. Adv. Chem. Phys. 1991, 80, 1.
 (751) Maroncelli, M. J. Mol. Liq. 1993, 57, 1.
 (752) Barbara, P. F.; Jarzeba, W. Adv. Photochem. 1990, 15, 1.
 (753) Rips, I. Ultrafast Reaction Dynamics and Solvent Effects, Gaudel, Y., Rossky, P. J., Eds.; AIP Press: New York, 1994; p 334. (754) Smith B. B.; Staib, A.; Hynes, J. T. Chem. Phys. **1993**, 176, 521.
- Brooks, A. A.; Steijskal, E. O.; Weiss, V. W. J. Chem. Phys. 1973, 58, 4045.
- Lilge, D.; Eimer, W.; Dorfmüller, T. J. Chem. Phys. 1987, 86,
- (757) Wakai, C.; Nakahara, M. J. Chem. Phys. 1995, 103, 2025.
 (758) Kubo, R.; Toda, M.; Hashitsume, N. Statistical Physics II, Nonequilibrium Statistical Mechanics, Springer-Verlag: Berlin,
- (759) Adelman, S. Adv. Chem. Phys. 1980, 44, 143.
- Gertner, B. J.; Wilson, K. R.; Hynes, J. T. J. Chem. Phys. 1989, (760)90, 3537
- Carter, E. A.; Hynes, J. T. J. Chem. Phys. 1991, 94, 5961.
- (762) Staib, A.; Borgis, D.; Hynes, J. T. J. Chem. Phys. 1995, 102, 2487.
- (763) Sumi, H.; Asano, T. J. Chem. Phys. 1995, 102, 9565.
- (764) Bagchi, B.; Oxtoby, D. W. J. Chem. Phys. 1983, 78, 2735.
- Grote, R. F.; van der Zwan, G.; Hynes, J. T. J. Phys. Chem. 1984, (765)88, 4676.
- (766) Carmeli, B.; Oxtoby, D. W. J. Chem. Phys. 1983, 78, 2735.
- (767) Hanggi, P.; Talkner, P.; Borkowec, M. Rev. Mod. Phys. 1990, 62, 251.
- Grote, R. F.; Hynes, J. T. J. Chem. Phys. 1980, 73, 2715.
- (769)Staub, J. E.; Borkowec, M.; Berne, B. J. Chem. Phys. 1986, 84, 1788.
- Maneke, G.; Schroeder, J.; Troe, J.; Voss, F. Ber. Bunsen-Ges. Phys. Chem. 1985, 89, 896.
- Troe, J. Ber. Bunsen-Ges. Phys. Chem. 1991, 95, 228.
- (772) Nikowa, L.; Schwarzer, D.; Troe, J.; Schroeder, J. Ultrafast Phenomena VIII; Martin, J.-L., Migus, A., Mourou, G. A., Zewail, A. H., Eds.; Springer-Verlag: Berlin, 1993; p 603.
- Lee, M.; Holton, G. R.; Hochstrasser, R. M. *Chem. Phys. Lett.* **1985**, *118*, 538.
- (774) Frost, W. *Theory of Unimolecular Reactions*; Academic Press: New York, 1973.
- Sumi, H.; Asano, T. Chem. Phys. Lett. 1995, 240, 125.
- Saluja, P. P. S.; Whalley, E. J. Chem. Soc., Chem. Commun. (776)**1983**, 10, 552.
- Whalley, E.; le Noble, W. J. Chapter 4 in ref 4.
- (778)Basilevsky, M. V.; Ryaboy, V. M.; Weinberg, N. N. J. Phys. Chem. **1991**, 95, 5533.
- (779) Basilevsky, M. V.; Weinberg, N. N. Can. J. Phys. 1995, 73, 267.
- (780) Sumi, H. *J. Phys. Chem.* **1991**, *95*, 3334. (781) Sumi, H. *J. Chem. Phys.* **1994**, *100*, 8825.
- (782) Sumi, H. J. Phys. Chem. 1995, 100, 4831.
- Sumi, H. Chem. Phys. 1996, 212, 9. (783)
- (784) Berezhkovsky, A. M.; Zitserman, V. Yu. Physica A 1990, 166,
- (785) Berezhkovsky, A. M.; Zitserman, V. Yu.; Yang, D.-Y.; Kuo, J.; Lin, S.-H. *Physica A* **1998**, *251*, 399. Simon, J. D. *Acc. Chem. Res.* **1988**, *21*, 128.
- (787) Barbara, P. F.; Jarzeba, W. Adv. Photochem. 1990, 15, 1.
 (788) Bagchi, B.; Chandra, A. Adv. Chem. Phys. 1991, 80, 1.
 (789) Maroncelli, M. J. Mol. Liquids 1993, 57, 1.

- Jarzeba, W.; Walker, G. C.; Johnson, A. E.; Barbara, P. F. *Chem. Phys.* **1991**, *152*, 57. (790)
- (791)Hong, P. F.; Gardecki, J. A.; Papazyan, A.; Maroncelli, M. J. Phys. Chem. **1995**, 99, 17311.
- (792) Nagasawa, Y.; Yartsev, A. P.; Tominaga, K.; Johnson, A. E.; Yoshihara, K. J. Chem. Phys. 1994, 101, 5717.
- (793) Nagasawa, Y.; Yartsev, A. P.; Tominaga, K.; Bisht, P. B. Johnson, A. E.; Yoshihara, K. *J. Phys. Chem.* **1995**, *99*, 653. (794) Yoshihara, K.; Tominaga, K.; Nagasawa, Y. Bull. Chem. Soc. *Jpn.* **1995**, *68*, 696.
- (795) Sumi, H.; Marcus, R. A. J. Chem. Phys. 1986, 84, 4894.
- (796) Nadler, W.; Marcus, R. A. J. Chem. Phys. 1987, 86, 3906.
- (797) Berezhkovsky, A. M.; Zitserman, V. Yu.; Polimeno, A. J. Chem. Phys. **1996**, 105, 6342.
- Talkner, P.; Braun, H. B. J. Chem. Phys. 1988, 88, 7538.
- Dygas, M. M.; Matkovsky, B. J.; Shuss, Z. J. Chem. Phys. 1986, *84*, 3731.
- (800) Langer, J. S. Ann. Phys. 1969, 54, 258.
- (801) Grote, R. F.; Hynes, J. T. J. Chem. Phys. 1981, 74, 4465.

- (802) Grote, R. F.; Hynes, J. T. J. Chem. Phys. 1981, 75, 2191.
- (803) Nitzan, A. Adv. Chem. Phys. 1988, 70, 489.
- (804) Basilevsky, M. V.; Chudinov, G. E. Chem. Phys. 1990, 144, 155.
- (805) Agmon, N.; Hopfield, J. J. J. Chem. Phys. **1983**, 78, 6947. (806) Agmon, N.; Hopfield, J. J. J. Chem. Phys. **1983**, 79, 2042.
- (807) Berezhkovsky, A. M.; Zitserman, V. Yu. Chem. Phys. Lett. 1989,
- (808) Basilevsky, M. V.; Ryaboy, V. M.; Weinberg, N. N. J. Phys. Chem. 1990, 94, 8734.

CR970461B